Тёмный

Advanced RAG: Combining RAG with Text-to-SQL 

LlamaIndex
Подписаться 21 тыс.
Просмотров 1,7 тыс.
50% 1

A lot of practical/enterprise agent use cases involve both unstructured and structured data. This video guide shows you how to create a custom agent that can query either your LlamaCloud index for RAG-based retrieval or a separate SQL query engine as a tool. In this example, we'll use PDFs of Wikipedia pages of US cities and a SQL database of their populations and states as documents.
Notebook: github.com/run...
LlamaCloud: cloud.llamaind...
For enterprise usage, come talk to us: www.llamaindex...

Опубликовано:

 

30 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 2   
@jim02377
@jim02377 День назад
Thank you for the tutorial. Maybe I am missing something but it seems like this has the potential of getting into an infinite loop. Can can you limit the number of iterations of tool calls so you don't get a big bill from someone because the system got into an infinite loop of using the LLM and querying cloud hosted sql database? Also, does the text to sql have the ability to see if the sql statement was created correctly?
@nguyenxuanphi9987
@nguyenxuanphi9987 2 дня назад
Nice tutorial!
Далее
Unlock Powerful Data Queries with LlamaIndex and RAG
20:26
Advanced RAG: Corrective RAG (with LlamaCloud)
12:00
Просмотров 1,5 тыс.
Postgres Goes Parquet | Scaling Postgres 339
11:33
Просмотров 2,4 тыс.
What Happens When You Combine RAG with Text2SQL?
22:52
What are AI Agents?
12:29
Просмотров 573 тыс.
Zustand with Context API - An Advanced Pattern
19:12
Просмотров 10 тыс.