Тёмный

Ali Ghodsi Lec 10, SVM, Kernel SVM 

Data Science Courses
Подписаться 21 тыс.
Просмотров 10 тыс.
50% 1

Опубликовано:

 

30 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 4   
@huwenhan
@huwenhan Год назад
Kernel SVM start @38:53 Soft Margin SVM start @58:01
@MrWkuling
@MrWkuling 7 лет назад
Thx for uploading the videos. Will lectures 9 and 6 also be made available?
@RahulPatel-gy3co
@RahulPatel-gy3co 6 лет назад
Are all quadratic programming problems necessarily convex? As far as I know, the general QP (P) as min 1/2 x^TQx + c^Tx s.t. linear constraints is convex iff the Q (Hessian) is positive semi-definite.
@asiphemzaza7471
@asiphemzaza7471 3 года назад
No, QP problems aren't necessarily convex. It is correct that Q must be positive semidefinite(PSD). This is the case here; the matrix S (at time 36:10) is certainly PSD by construction. Hence this is a convex quadratic program, with a solution guaranteed if the KKT theorem holds.
Далее
AliGhodsi Lec 11, Soft Margin SVM
1:05:54
Просмотров 4,2 тыс.
Ali Ghodsi Lec 9, Regularization, Hard Margin SVM
1:15:21
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
Ali Ghodsi, Lec 9: SPCA, Nystrom Approximation, NMF
1:14:48
Ali Ghodsi Lec4 Logistic regression
1:12:19
Просмотров 7 тыс.
Lecture 15 - Kernel Methods
1:18:19
Просмотров 223 тыс.
Support Vector Machines Part 1 (of 3): Main Ideas!!!
20:32
Explain Kernel Trick for SVM
6:09
Просмотров 380
AliGhodsi Lec 12, Metric Learning
1:16:06
Просмотров 6 тыс.
Ali Ghodsi, Lec 15: t-SNE
57:21
Просмотров 10 тыс.
16. Learning: Support Vector Machines
49:34
Просмотров 2 млн