Тёмный

An Amazing Floor & Square Root Identity 

Dr Barker
Подписаться 22 тыс.
Просмотров 3,8 тыс.
50% 1

Опубликовано:

 

7 сен 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 25   
@alipourzand6499
@alipourzand6499 Месяц назад
I used desmos to graph the three functions anx actually the equation holds for x>=0.6782 whitch is the lower bound value that has been found. Great video as always.
@eliasmai6170
@eliasmai6170 Месяц назад
always love seeing your video, especially ones about floor function.
@DrBarker
@DrBarker Месяц назад
Thank you!
@graf_paper
@graf_paper Месяц назад
I know that this isn't totally relevant because we are accepting all positive real values for n, but I thought it was interesting to note that 9n+8 can never be a aquare number for any integer valuenof n. 0,1,4,7 are the only square numbers mod 9
@iMíccoli
@iMíccoli Месяц назад
I remember seeing this problem in a floor function list but n was a natural number so that observation is actually crucial in the proof.
@TheArtOfBeingANerd
@TheArtOfBeingANerd Месяц назад
How do you show this result?
@iMíccoli
@iMíccoli Месяц назад
​@@TheArtOfBeingANerdLet 9n+8=s² for some natural number s. Now look at the equation modulo 3: 0+2=s² so s²=2 (mod 3) which is not true because all perfect squares are 1 modulo 3.
@iMíccoli
@iMíccoli Месяц назад
​​​​@@TheArtOfBeingANerdAnother way to prove is to use @graf_paper method. Look at all the possible remainders of s² when divided by 9 and you'll notice that 8 is not in that list. s can leave a remainder of (0,1,2...8) when divided by 9 so just use modular arithmetic to find the remainders of s², here are some examples: If s=7 (mod 9) then s²=49=4(mod 9) If s=8 (mod 9) then s²=64=1(mod 9)
@antosandras
@antosandras Месяц назад
Using the well-known inequalities between geometric, arithmetic and squared means for not equal a, b, c: cbrt(abc) < (a+b+c)/3 < sqrt((a^2+b^2+c^2)/3) /cbrt stands for cube root/ for sqrt(n-1), sqrt(n), sqrt(n+1), we get 3*(cbrt(sqrt((n^3-n)) < sqrt(n-1)+sqrt(n)+sqrt(n+1) < 3*sqrt((n-1+n+n+1)/3) = sqrt(9n). For n>=4, it's easy to see that sqrt(9n-1) < 3*(cbrt(sqrt((n^3-n)), or equivalently (9n-1)^3 < 3^6(n^3-n): it leads to the quadratic 0 < (9n)^2 - 28*9n + 1/3 = (9n-14)^2 - 14^2 + 1/3, clearly true for n>=4. So for n>=4, sqrt(9n-1) < sqrt(n-1)+sqrt(n)+sqrt(n+1), and the same is easy to check "manually" for n=2, 3. Replacing n by n+1, we get the two desired inequalities: sqrt(9n+8) < sqrt(n)+sqrt(n+1)+sqrt(n+2) < sqrt(9n+9) implying the identity in question. Q.E.D.
@gtjacobs
@gtjacobs 29 дней назад
You're a very good presenter; I'm enjoying your channel. Thank you for sharing your talents.
@DrBarker
@DrBarker 28 дней назад
Thank you so much!
@jellybabiesarecool4657
@jellybabiesarecool4657 Месяц назад
Your number theory videos are my favourites! Cool techniques used here!
@DrBarker
@DrBarker Месяц назад
Thank you!
@Utesfan100
@Utesfan100 Месяц назад
Using the techniques used to bound a, and c
@magicmeatball4013
@magicmeatball4013 Месяц назад
Beautiful solution, I always love inequality work.
@pseudo-ku
@pseudo-ku Месяц назад
Your videos are wonderful
@wqltr1822
@wqltr1822 Месяц назад
How was this problem come up with? The '9' coefficient makes since (1+1+1)^2 = 9, but the constant at the end seems tricky to pinpoint, and I assume there are other non-integer constants which still satisfy the inequality. Is it posssible to generalise?
@DrBarker
@DrBarker Месяц назад
I found this posed as a problem to solve - there's a link in the description. Not sure how it was discovered though. It should be possible to generalise to include more terms. For example, some trial and error with replacing the "+8" term leads to sqrt{16n + 23} < sqrt{n} + sqrt{n+1} + sqrt{n+2} + sqrt{n+3} < sqrt{16n + 24}, so a similar result holds for floor{sqrt{16n + 23}}.
@bubbotube
@bubbotube Месяц назад
@@DrBarker Problem E3010 appeared on Vol. 93, issue No. 7, page 483. It's been published in 1983. Still loved your solution, though.
@MichaelRothwell1
@MichaelRothwell1 Месяц назад
Beautiful problem and solution!
@ronbannon
@ronbannon Месяц назад
Great problem! Heer's a question: 3 sqrt(n) < sqrt(n) + sqrt(n+1) + sqrt(n+2) is true for all natural numbers; and sqrt(9n+8) < 3 sqrt(n+1) for all natural numbers. So why can't you just compare floor(3 sqrt(n)) < = floor(3 sqrt(n+1)), which is true for all natural numbers; hence, the stated problem is true for all natural numbers.
@antosandras
@antosandras Месяц назад
You would need floor(3 sqrt(n+1)) < = floor(3 sqrt(n)) that is not true.
@yuichiro12
@yuichiro12 Месяц назад
You can't conclude that sqrt(9n+8)
@wesleysuen4140
@wesleysuen4140 Месяц назад
Is this similar to Part (3) of Problem 723 of Ramanujan’s 3rd notebook: floor(sqrt(n)+sqrt(n+1))=floor(sqrt(4n+2))?
@mil9102
@mil9102 Месяц назад
It’s Friday already ???
Далее
A Nice Geometry Problem
6:41
Просмотров 3,7 тыс.
What Lies Above Pascal's Triangle?
25:22
Просмотров 199 тыс.
Modus males sekolah
00:14
Просмотров 10 млн
A 90-year-old Unsolved Telephone Question
28:45
Просмотров 63 тыс.
Finding the Area of a Region
14:41
Просмотров 2,3 тыс.
1995 British Mathematics Olympiad problem
20:59
Просмотров 127 тыс.
A Problem from the Toughest Math Contest
8:55
Просмотров 7 тыс.
The Comma Sequence is WILD..
8:24
Просмотров 84 тыс.
Kaprekar's Constant
9:44
Просмотров 536 тыс.
How to Prove a Number is Irrational
16:15
Просмотров 29 тыс.
How does a calculator find square roots?
11:24
Просмотров 156 тыс.
Fast Inverse Square Root - A Quake III Algorithm
20:08