Тёмный

Darcy weisbach equation derivation || fluid mechanics || 

e Tution
Подписаться 43 тыс.
Просмотров 66 тыс.
50% 1

DARCY WEISBACH EQUACTION DERIVATION || fluid mechanics ||
In fluid dynamics, the Darcy-Weisbach equation is an empirical equation, which relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.
The Darcy-Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also variously called the Darcy-Weisbach friction factor, friction factor, resistance coefficient, or flow coefficient.
Pressure-loss form
In a cylindrical pipe of uniform diameter D, flowing full, the pressure loss due to viscous effects Δp is proportional to length L and can be characterized by the Darcy-Weisbach equation:[2]
{\displaystyle {\frac {\Delta p}{L}}=f_{\mathrm {D} }\cdot {\frac {
ho }{2}}\cdot {\frac {{\langle v
angle }^{2}}{D}},} {\displaystyle {\frac {\Delta p}{L}}=f_{\mathrm {D} }\cdot {\frac {
ho }{2}}\cdot {\frac {{\langle v
angle }^{2}}{D}},}
where the pressure loss per unit length
Δp
/
L
(SI units: Pa/m) is a function of:
ρ, the density of the fluid (kg/m3);
D, the hydraulic diameter of the pipe (for a pipe of circular section, this equals the internal diameter of the pipe; otherwise D ≈ 2√A/π for a pipe of cross-sectional area A) (m);
⟨v⟩, the mean flow velocity, experimentally measured as the volumetric flow rate Q per unit cross-sectional wetted area (m/s);
fD, the Darcy friction factor (also called flow coefficient λ[3][4]).
For laminar flow in a circular pipe of diameter {\displaystyle D_{c}} D_{c}, the friction factor is inversely proportional to the Reynolds number alone (fD =
64
/
Re
) which itself can be expressed in terms of easily measured or published physical quantities (see section below). Making this substitution the Darcy-Weisbach equation is rewritten as
{\displaystyle {\frac {\Delta p}{L}}={\frac {128}{\pi }}\cdot {\frac {\mu Q}{D_{c}^{4}}},} {\displaystyle {\frac {\Delta p}{L}}={\frac {128}{\pi }}\cdot {\frac {\mu Q}{D_{c}^{4}}},}
where
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m2 = kg/(m·s));
Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q =
π
/
4
Dc2⟨v⟩ (m3/s).
Note that this laminar form of Darcy-Weisbach is equivalent to the Hagen-Poiseuille equation, which is analytically derived from the Navier-Stokes equations
Head-loss form
The head loss Δh (or hf) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is
{\displaystyle \Delta p=
ho g\,\Delta h,} {\displaystyle \Delta p=
ho g\,\Delta h,}
where
Δh is the head loss due to pipe friction over the given length of pipe (SI units: m);[b]
g is the local acceleration due to gravity (m/s2).
It is useful to present head loss per length of pipe (dimensionless):
{\displaystyle S={\frac {\Delta h}{L}}={\frac {1}{
ho g}}\cdot {\frac {\Delta p}{L}},} {\displaystyle S={\frac {\Delta h}{L}}={\frac {1}{
ho g}}\cdot {\frac {\Delta p}{L}},}
where L is the pipe length (m).
Therefore, the Darcy-Weisbach equation can also be written in terms of head loss:[5]
{\displaystyle S=f_{\text{D}}\cdot {\frac {1}{2g}}\cdot {\frac {{\langle v
angle }^{2}}{D}}.} {\displaystyle S=f_{\text{D}}\cdot {\frac {1}{2g}}\cdot {\frac {{\langle v
angle }^{2}}{D}}.}
In terms of volumetric flow
The relationship between mean flow velocity ⟨v⟩ and volumetric flow rate Q is
{\displaystyle Q=A\cdot \langle v
angle ,} {\displaystyle Q=A\cdot \langle v
angle ,}
where:
Q is the volumetric flow (m3/s),
A is the cross-sectional wetted area (m2).
In a full-flowing, circular pipe of diameter {\displaystyle D_{c}} D_{c},
{\displaystyle Q={\frac {\pi }{4}}D_{c}^{2}\langle v
angle .} {\displaystyle Q={\frac {\pi }{4}}D_{c}^{2}\langle v
angle .}
Then the Darcy-Weisbach equation in terms of Q is
{\displaystyle S=f_{\text{D}}\cdot {\frac {8}{\pi ^{2}g}}\cdot {\frac {Q^{2}}{D_{c}^{5}}}.} {\displaystyle S=f_{\text{D}}\cdot {\frac {8}{\pi ^{2}g}}\cdot {\frac {Q^{2}}{D_{c}^{5}}}.}
Shear-stress form
The mean wall shear stress τ in a pipe or open channel is expressed in terms of the Darcy-Weisbach friction factor as[6]
{\displaystyle \tau ={\frac {1}{8}}f_{\text{D}}
ho {\langle v
angle }^{2}.} {\displaystyle \tau ={\frac {1}{8}}f_{\text{D}}
ho {\langle v
angle }^{2}.}
The wall shear stress has the SI unit of pascals (Pa)
#DARCY #DARCYWEISBACH #DARCYWEISBACHEQUATION

Опубликовано:

 

3 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 77   
@civilcivil6810
@civilcivil6810 5 лет назад
Thanks you, looking like my mother 😀
@skrisnakumari3429
@skrisnakumari3429 Год назад
Looking like my dream girl 🤩
@SelviPadmaNathan
@SelviPadmaNathan 7 месяцев назад
​@skrisnakumari3429 😂😂
@ravipendra7148
@ravipendra7148 3 года назад
your explanation is very very nice thanks for providing this type of video
@Focuss09
@Focuss09 Год назад
good lecturing mam keep it up may god bless U and be happy 100 years teaching like this only
@musicalupdate4580
@musicalupdate4580 2 года назад
It is really understandable video mam,thanks for these video,we expect much more these type of understanding videos..
@mohdsajid1571
@mohdsajid1571 4 года назад
THANKS MAM FOR YOUR EASY UNDERASTANDABLE EXPLANATION
@Pradeep-ri6dc
@Pradeep-ri6dc 2 года назад
In last step 4÷2 =2 not 1/2
@MSD-es1hw
@MSD-es1hw 3 года назад
Good Madum but in friction.... There is one correction that( pie.d.l.....)means wetted surface area.... Thanq really helpful.....
@moinakter4708
@moinakter4708 4 года назад
Thanks mam... It will really help me 😍
@theboyofjoyy
@theboyofjoyy 8 месяцев назад
Thanks for your work!! begins at 1:50
@vemamalathi3799
@vemamalathi3799 4 года назад
Nice explanation madam and good delivery of word clearly
@tracysara6754
@tracysara6754 2 года назад
Still confused on friction factor and coefficient of friction
@impostor__5168
@impostor__5168 2 года назад
Thank you ma'am I saw your video just before the exam and it helped :)
@collinskyama2300
@collinskyama2300 2 года назад
thank you for the explanation i like the way youve kept it short though the language am not getting it. but thanks
@spectrum_gaming9382
@spectrum_gaming9382 5 лет назад
Madam. Since we have two pressure heads P1 and P2 so then why don't we have frictional forces F1 and F2
@harleylord2752
@harleylord2752 4 года назад
Bro friction is same with surface
@vickyvk8876
@vickyvk8876 4 года назад
Friction is always acts opposite to the flow of the fluid.....
@siddarthaveerla1060
@siddarthaveerla1060 3 года назад
Thanks madam super telling excellent work
@diliptamata3034
@diliptamata3034 5 месяцев назад
Mam we can cancel out 4/2 so i.e answer will 2flv^2/gd ❤️
@caleb461
@caleb461 4 года назад
Well done!
@SatheeshBalasundaram-b3x
@SatheeshBalasundaram-b3x 9 месяцев назад
Thanks mam...🎉
@ritikaverma8797
@ritikaverma8797 5 лет назад
Thank you mam
@ksree-kx9oo
@ksree-kx9oo 3 года назад
Superb explanation
@akashkumarkumar1198
@akashkumarkumar1198 2 года назад
Helpful video really mam
@newstop6230
@newstop6230 Год назад
Wow
@lavanyas.b8389
@lavanyas.b8389 4 года назад
Tq mam .i easily understood it
@Chinna749
@Chinna749 2 года назад
Madam chaala speed ga cheppukoni velthunnaru we can't catch your speed pls tell slowly other your way of teaching was good👍👍
@Chinna749
@Chinna749 2 года назад
Other wise
@sadhguruphilosophy2065
@sadhguruphilosophy2065 4 года назад
Thank you so much ma'm
@Dhivakar_Marimuthu_knm-99
@Dhivakar_Marimuthu_knm-99 3 года назад
Explanation good
@shivangitripathi520
@shivangitripathi520 3 месяца назад
Thanks Mam
@Sam-du5fb
@Sam-du5fb 3 года назад
May I ask why f'/p = f/2?
@Janufoodtravelvlogs
@Janufoodtravelvlogs 2 года назад
She tell know it's constant
@HANVIKHA_JOY_MANAR
@HANVIKHA_JOY_MANAR 3 года назад
Super mam
@mujahidshaikh7
@mujahidshaikh7 2 года назад
in last line some mistake may be please you see and do correct this i do not understand last line how came in the position put f=f'
@CHUdaykiranKT
@CHUdaykiranKT 3 года назад
Tq Madam this video very useful to me
@BalaThineshv
@BalaThineshv 8 месяцев назад
Mam coming 29th machining technology exam ply give any important questions
@Karthik12485
@Karthik12485 2 года назад
Super madam good explanation
@Mediation4Healing_Calm_Peace.
@Mediation4Healing_Calm_Peace. 3 года назад
Nice explaination mam
@nithinraghavendra9218
@nithinraghavendra9218 2 года назад
Perfect!
@akashvishwakarma6667
@akashvishwakarma6667 2 года назад
Thank you very much...madam
@jmfchittu8419
@jmfchittu8419 3 года назад
mam why pressure p2 is opposite to flow
@cd_edits8405
@cd_edits8405 2 года назад
Thank you mam i fill easy...
@ramanmishra7767
@ramanmishra7767 5 лет назад
too good mame osm loke it 😋😋😋😋
@kalisettinagamanikanta4087
@kalisettinagamanikanta4087 Год назад
Dhanyavaad
@jayavijyacreations3774
@jayavijyacreations3774 Год назад
Thank you very much for your brief and straight to point explanation madam
@TheLokhande
@TheLokhande 5 лет назад
Thank you madam
@kazimd.mehedihasan399
@kazimd.mehedihasan399 Год назад
never hf=(4fLV2/2gd) It is hf=(4fLV2/8gd)
@ShubhamYadav-xy5dg
@ShubhamYadav-xy5dg 2 года назад
🙇🙇🙇
@podakoppe5535
@podakoppe5535 3 года назад
Got the concept :)))
@neerajsetty7119
@neerajsetty7119 3 года назад
Thank you
@chanduchandu6893
@chanduchandu6893 Год назад
Thanks
@ravirowdy828
@ravirowdy828 3 года назад
what are the minor losses mam
@JOLLYRANCHER.201
@JOLLYRANCHER.201 Год назад
Thank you mam, you're beautiful and God bless you
@dgn6283
@dgn6283 3 года назад
Thank you teacher
@mandlasiddhartha6531
@mandlasiddhartha6531 2 года назад
Nice mam 😊🥰😍👍
@shashidharmadar2964
@shashidharmadar2964 4 года назад
Thank you madam
@poonamshukla2028
@poonamshukla2028 3 года назад
Thankyou
@lakshmiarepaka4020
@lakshmiarepaka4020 5 лет назад
How does row turns into 2 in the last step
@pratikparbat341
@pratikparbat341 4 года назад
Its actually rho(density)
@vickyvk8876
@vickyvk8876 4 года назад
Same doubt
@vickyvk8876
@vickyvk8876 4 года назад
@@pratikparbat341 no its 2 only... if it is rho where is that 4
@booraraghavendralokesh2373
@booraraghavendralokesh2373 3 года назад
@@vickyvk8876 f'/rho =f/2 ....so in the place of f'/rho we have taken f/2
@booraraghavendralokesh2373
@booraraghavendralokesh2373 3 года назад
@@vickyvk8876 and 4 is came from p/A =πd/π/4 d square ....so numerator d and dinominator d gets cancel and π also gets cancel in both numerator and dinominator....and we get 4/d
@IOSDINEGAMING12308
@IOSDINEGAMING12308 Год назад
Thanks mam❤
@dipankarb
@dipankarb Год назад
Dekh k hi nhi dekhne ka Mann Kiya
@Janufoodtravelvlogs
@Janufoodtravelvlogs 2 года назад
Boundary layer chapter
@SandeepYadav-bj1zl
@SandeepYadav-bj1zl 4 года назад
Madam why u take P2 as negative
@vinayakhuracan5182
@vinayakhuracan5182 2 года назад
Velocity at inlet is high (low pressure), as moving on through the pipe velocity decreases due to friction so at outlet velocity is relatively low to inlet (high pressure), always pressure flows from high to low ( fancy term:back flow)
@vijay-sg3bb
@vijay-sg3bb 2 года назад
It is in opposite direction
@sadeek2009
@sadeek2009 3 года назад
لكل زول بقرى عند ساتي يدعي للمرة تجي تقرينا
@masinisudheerreddy5817
@masinisudheerreddy5817 3 года назад
Thanku mam
@karthikkarthikkn4615
@karthikkarthikkn4615 2 месяца назад
10:12
@saiteja2928
@saiteja2928 5 лет назад
Thank u madam
@shivasmart967
@shivasmart967 3 года назад
tq mam
@mr.ramanbhagat1627
@mr.ramanbhagat1627 4 года назад
jo samjana nhi aaya bahut jldi skip kiya (f/2)
Далее
Airpod Through Glass Trick! 😱 #shorts
00:19
Просмотров 2,3 млн
darcy weisbach equation derivation
14:34
Просмотров 91 тыс.
Understanding Bernoulli's Equation
13:44
Просмотров 3,4 млн
Flow and Pressure in Pipes Explained
12:42
Просмотров 1 млн
Understanding Aerodynamic Drag
16:43
Просмотров 950 тыс.