Тёмный

Deep Learning 59: Fundamentals of Graph Neural Network 

Ahlad Kumar
Подписаться 22 тыс.
Просмотров 34 тыс.
50% 1

Опубликовано:

 

28 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 44   
@teetanrobotics5363
@teetanrobotics5363 4 года назад
One of the best professors on the planet
@deeps-n5y
@deeps-n5y 3 года назад
No BS and straight to the point.. Thanks for this gem
@shwetaredkar734
@shwetaredkar734 4 года назад
Very helpful tutorial. Please include Graph Convolution neural network too. Thanks!
@nitishmc6929
@nitishmc6929 3 года назад
Great explanation sir....
@DungPham-ai
@DungPham-ai 4 года назад
Great. Hope you make more video about graph deep learning
@ssshukla26
@ssshukla26 3 года назад
These lectures are fantastic. Thank you so much sir. Just one request there are too much adverts in between and these adverts literally throw my concentration off everytime...
@mohamedabbashedjazi493
@mohamedabbashedjazi493 4 года назад
Thank you for this great series on GNNs, what do you recommend as a paper to learn more variants of GNNs, I found dozens in the literature and I am confused about which one is the next. Greetings from Algeria.
@aproperhooligan5950
@aproperhooligan5950 2 года назад
Excellent knowledge transfer. Thank you.
@marsrover2754
@marsrover2754 2 года назад
Great and to the point explanation sir. Can you make more videos from basics to advanced in graph neural network. If you have prepared where can I find the proper playlist on the same.
@paulnguyen9254
@paulnguyen9254 4 года назад
Excellent!
@saikrishnarallabandi9084
@saikrishnarallabandi9084 4 года назад
Very very helpful. Thanks a lot!
@vishalch2038
@vishalch2038 3 года назад
Great video sir, Can you please explain @15:46 why did you only take self loop for node 1 only and not others ?
@beizhou2488
@beizhou2488 4 года назад
Could I understand that all the graph neural networks are designed to achieve one sole purpose, which is calculating the node/vertex embedding?
@chandrakishtawal4595
@chandrakishtawal4595 3 месяца назад
Very nicely explained 👍
@mosben3700
@mosben3700 4 года назад
Nice and clear explanation!, weating the next video especially normalization and propagation rule
@yassinetoumi403
@yassinetoumi403 4 года назад
thanks , clear explanation we need the implamatation pls to more understanding
@cybervigilante
@cybervigilante 3 года назад
What about graphs that have both directed and undirected edges? What are they called? That's actually quite common - a street network that has some two-way and some one-way streets is both.
@MCRuCr
@MCRuCr 3 года назад
First think that came to my mind: Neural Nets itself are graphs. MINDBLOWN
@ankitdsh18
@ankitdsh18 4 года назад
Hi sir it will be good if you can provide some problem sets so that we can learn by doing some problems. Thanks
@kaushikroy4041
@kaushikroy4041 4 года назад
This is very useful. But I counted an Ad every 1 minute of watching. This is really frustrating.
@dubey_ji
@dubey_ji 3 года назад
looks like he removed ads now but content's worth atleast the ads :p
@vinayaksharma4200
@vinayaksharma4200 4 года назад
Thank you Sir, Can you make a Video on CPVTON, GMM or Face Reconstruction?
@shwetaredkar734
@shwetaredkar734 4 года назад
When is the next video coming up for this? eagerly waiting.
@cube3483
@cube3483 4 года назад
Thank you so much for such a nice tutorial. kindly if you have any tutorial on EBGAN or Energy related GAN please share!!!! much appreciated.
@faizulrakibsayem795
@faizulrakibsayem795 3 года назад
Sir, can you make videos on DTW, GMM and HMM?
@danupongbuttongkum3631
@danupongbuttongkum3631 4 года назад
Thank you so much. I'll be waiting for the next topic.
@Biedropegaz
@Biedropegaz 4 года назад
Nice lecutre :-)
@LayneSadler
@LayneSadler 4 года назад
Hmm. How does this not cover message passing and convolution?
@learnwitharefin3269
@learnwitharefin3269 Месяц назад
thanks sir
@ipuhbamrash6708
@ipuhbamrash6708 4 года назад
Nice person. Waiting for more videos.
@sudhirsolanki
@sudhirsolanki 4 года назад
My question is not related to this video .. Sir , firstly how to create weight file after training the neural network ? Second , how we can use this weighted file on our local pc ? Plz provide some related link/contant , make video on this....
@ShikhaMallick
@ShikhaMallick 4 года назад
You can save model weights using tensorflow function and retrieve the saved weights using load_model function when you need. Please refer tensorflow save_model and load_model functions.
@omarmahtab6851
@omarmahtab6851 2 года назад
Good video with some verbal mistakes like: unique/different 5:57, the word unique and different means the same . Initially in the first part numbers of nodes were miscalculated. Overall appreciated!
@rakeshsinghrawat99
@rakeshsinghrawat99 4 года назад
Thanks
@NarasimhaRaoGundavarapu
@NarasimhaRaoGundavarapu 4 года назад
Great explanation! Just want to point out that being unique means the same as two or more things being different. I think there some confusion here 6:10.
@rohitsrao
@rohitsrao 4 года назад
Yes, I think he meant that the labels don't have to be distinct. They can repeat.
@asifmian43
@asifmian43 Год назад
How 1 and 1 are unique 6:11
@fairuzshadmanishishir8171
@fairuzshadmanishishir8171 4 года назад
Honey lecture series
@shouvikmajumder6614
@shouvikmajumder6614 4 года назад
You say unique but you mean non-unique, right?
@patrickbutler2839
@patrickbutler2839 4 года назад
Ridiculous amount of ads thrown into the video
@WahranRai
@WahranRai 2 года назад
IT IS NOT YET NEURAL NETWORK ! YOU ARE TALKING ABOUT GRAPH THEORY ONLY !!!
@Flowereacer89
@Flowereacer89 3 года назад
why are there dislikes on the video ? Where do these people come from, what do they need ?
@MrArmas555
@MrArmas555 4 года назад
++
Далее
Deep Learning 60:  Architecture of Graph Neural Network
25:53
Theoretical Foundations of Graph Neural Networks
1:12:20
Только ЕМУ это удалось
01:00
Просмотров 2,9 млн
Always Help the Needy
00:28
Просмотров 9 млн
Graph Neural Networks: A gentle introduction
29:15
Просмотров 44 тыс.
Graph Convolutional Networks (GCNs) made simple
9:25
Просмотров 121 тыс.
Graph Neural Networks
1:32:02
Просмотров 15 тыс.