Тёмный

Efficient Fine-Tuning for Llama-v2-7b on a Single GPU 

DeepLearningAI
Подписаться 347 тыс.
Просмотров 85 тыс.
50% 1

Развлечения

Опубликовано:

 

29 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 64   
@thelinuxkid
@thelinuxkid Год назад
Very helpful! Already trained llama-2 with custom classifications using the cookbook. Thanks!
@craigrichards5472
@craigrichards5472 3 месяца назад
Amazing, can’t wait to play and train my first model 🎉
@dinupavithran
@dinupavithran 10 месяцев назад
Very informative. Direct and to the point content in a easily understandable presentation.
@thedelicatecook2
@thedelicatecook2 5 месяцев назад
Well this was simply excellent, thank you 🙏🏻
@manojselvakumar4262
@manojselvakumar4262 10 месяцев назад
Great content, well presented!
@andres.yodars
@andres.yodars Год назад
One of the most complete videos. Must watch
@ab8891
@ab8891 Год назад
Excellent xtal clear surgery on GPU VRAM utilization...
@KarimMarbouh
@KarimMarbouh Год назад
🖖alignement by sectoring hyperparameters in behaviour, nice one
@Ev3ntHorizon
@Ev3ntHorizon Год назад
Excellent coverage, thankyou.
@ggm4857
@ggm4857 Год назад
I like to kindly request @DeepLearningAI to prepare such hands-on workshop on fine-tunning Source Code Models.
@Deeplearningai
@Deeplearningai Год назад
Don't miss our short course on the subject! www.deeplearning.ai/short-courses/finetuning-large-language-models/
@ggm4857
@ggm4857 Год назад
@@Deeplearningai , Wow thanks.
@karanjakhar
@karanjakhar Год назад
Really helpful. Thank you 👍
@Ay-fj6xf
@Ay-fj6xf Год назад
Great video, thank you!
@msfasha
@msfasha Год назад
Clear and informative, thanx.
@zubairdotnet
@zubairdotnet Год назад
Nvidia H100 GPU on Lambda labs is just $2/hr, I am using it for past few months unlike $12.29/hr on AWS as shown in the slide. I get it, it's still not cheap but just worth mentioning here
@pieromolino_pb
@pieromolino_pb Год назад
You are right, we reported the AWS price there as it's hte most popular option and it was not practical to show all the pricing of all the vendors. But yes you can get them for cheaper elsewhere like from Lambda, thanks for pointing it out
@rankun203
@rankun203 Год назад
Last time I tried it, H100s are out of stock on Lambda
@zubairdotnet
@zubairdotnet Год назад
@@rankun203 They are available only in specific region mine is in Utah, I don't think they have expanded it plus there is no storage available in this region meaning if you shut down your instance, all data is lost
@Abraham_writes_random_code
@Abraham_writes_random_code Год назад
together AI is $1.4/hr on your own fine tuned model :)
@PieroMolino
@PieroMolino Год назад
@@Abraham_writes_random_code Predibase is cheaper than that
@tomhavy
@tomhavy Год назад
Thank you!
@goelnikhils
@goelnikhils Год назад
Amazing Content of fine tuning LLM
@nguyenanhnguyen7658
@nguyenanhnguyen7658 Год назад
Very helpful. Thanks.
@rajgothi2633
@rajgothi2633 Год назад
amazing video
@jirikosek3714
@jirikosek3714 Год назад
Great job, thumbs up!
@dudepowpow
@dudepowpow 2 месяца назад
28 zoom notifications! Travis working too hard
@rgeromegnace
@rgeromegnace Год назад
Eh, c'était super. Merci beaucoup!
@TheGargalon
@TheGargalon Год назад
And I was under the delusion that I would be able to fine-tune the 70B param model on my 4090. Oh well...
@iukeay
@iukeay Год назад
I got a 40b model working on a 4090
@TheGargalon
@TheGargalon Год назад
@@iukeay Did you fine tune it, or just inference?
@ahsanulhaque4811
@ahsanulhaque4811 8 месяцев назад
70B param? hahaha.
@ayushyadav-bm2to
@ayushyadav-bm2to 8 месяцев назад
What's the music in the beginning, can't shake it off
@bachbouch
@bachbouch Год назад
Amazing ❤
@nminhptnk
@nminhptnk Год назад
I ran Colab T4 and still got into “RuntimeError: CUDA Out of memory”. Any thing else I can do please?
@stalinamirtharaj1353
@stalinamirtharaj1353 Год назад
@pieromolino_pb -Is Ludwig allows to locally download and deploy the fine-tuned model?
@hemanth8195
@hemanth8195 Год назад
Thankyou
@nekro9t2
@nekro9t2 Год назад
Please can you provide a link to the slides?
@ggm4857
@ggm4857 Год назад
Hello everyone, I would be so happy if the recorded video have caption/subtitles.
@kaifeekhan_25
@kaifeekhan_25 Год назад
Right
@dmf500
@dmf500 Год назад
it does, you just have to enable it! 😂
@kaifeekhan_25
@kaifeekhan_25 Год назад
​@@dmf500now it is enabled😂
@PickaxeAI
@PickaxeAI Год назад
at 51:30 he says don't repeat the same prompt in the training data. What if I am fine-tuning the model on a single task but with thousands of different inputs for the same prompt?
@brandtbealx
@brandtbealx Год назад
It will cause overfitting. It would be similar to training an image classifier with a 1000 pictures of roses and only one lilly, then asking it to predict both classes with good accuracy. You want the data to have a normal distribution around your problem space.
@satyamgupta2182
@satyamgupta2182 Год назад
@PickaxeAI Did you come across a solution for this?
@manojselvakumar4262
@manojselvakumar4262 10 месяцев назад
Can you give an example for the task? I'm trying to understand in what situation you'd need different completions for the same prompt
@pickaxe-support
@pickaxe-support Год назад
Cool video. If I want to fine-tune it on a single specific tassk (keyword extraction), should I first train an instruction-tuned model, and then train that on my specific task? Or mix the datasets together?
@shubhramishra8698
@shubhramishra8698 Год назад
also working on keyword extraction! I was wondering if you'd had any success fine tuning?
@feysalmustak9604
@feysalmustak9604 Год назад
How long did the entire training process take?
@edwardduda4222
@edwardduda4222 6 месяцев назад
Depends on your hardware, dataset, and hyper parameters you’re manipulating. The training process is the longest phase in developing a model.
@SDAravind
@SDAravind Год назад
can you share the slide, please?
@arjunaaround4013
@arjunaaround4013 Год назад
❤❤❤
@rachadlakis1
@rachadlakis1 2 месяца назад
can we have the slides plz ?
@kevinehsani3358
@kevinehsani3358 Год назад
epochs=3, since we are fine tunning, would epochs=1 would suffice?
@pieromolino_pb
@pieromolino_pb Год назад
It really depends on the dataset. Ludwig has also an early stopping mechanism where you can specify the number of epochs (or steps) without improvement before stopping, so you could set epochs to a relatively large number and have the early stopping take care of not wasting compute time
@leepro
@leepro 6 месяцев назад
Cool! ❤
@Neberheim
@Neberheim 11 месяцев назад
This seems to make a case for Apple Silicon for training. The M3 Max performs close to an RTX 3080, but with access to up to 192GB of memory.
@ahsanulhaque4811
@ahsanulhaque4811 8 месяцев назад
Did you try on Apple silicon M1 Max?
@mohammadrezagh4881
@mohammadrezagh4881 Год назад
when I run the code in Perform Inference, I frequently receive ValueError: If `eos_token_id` is defined, make sure that `pad_token_id` is defined. what should I do?
@arnavgrg
@arnavgrg Год назад
This is now fixed on Ludwig master!
Далее
The EASIEST way to finetune LLAMA-v2 on local machine!
17:26
Linus Torvalds: Speaks on Hype and the Future of AI
9:02
Genome-Note Publication Pipeline (BGA24)
1:41:34
🧯Долгожданная встреча
1:01
Просмотров 2,9 млн