Тёмный

Example of Inverse Laplace's Transform for repeated poles using residual method 

RF Design Basics
Подписаться 26 тыс.
Просмотров 10 тыс.
50% 1

In this captivating video, we delve into the fascinating world of repeated poles and their solution using the residual method. Through a clear and concise example, discover how to unravel complex equations and extract the original time-domain function from its Laplace counterpart. Perfect for students and enthusiasts alike, this tutorial demystifies the process, empowering you to conquer even the most challenging of inverse Laplace transformations with confidence.
#LaplaceTransform #InverseLaplaceTransform #ResidualMethod #CircuitAnalysis #ElectricalEngineering #Mathematics #EngineeringEducation #Tutorial #ComplexAnalysis #MathTutorial #STEMEducation #RU-vidTutorial #ElectronicsTutorial #EngineeringStudents #MathematicsEducation

Опубликовано:

 

13 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 13   
@KasunIshara
@KasunIshara 2 дня назад
Well explained.
@romjanali5576
@romjanali5576 12 дней назад
Thank so much
@juanmaurin5253
@juanmaurin5253 5 месяцев назад
When u try to calculate C using residues, you cant just cancel the poles with the zeros and take that limit. you HAVE to derivate aftherwards
@alivasss
@alivasss Год назад
Thank you Boss !!!!
@SaninSelimovic-zh8eq
@SaninSelimovic-zh8eq Год назад
can you solve this task?
@HusseinNaserddine
@HusseinNaserddine Год назад
great thank you !!!!!
@alivasss
@alivasss Год назад
Okkkkkk
@godwincornelius201
@godwincornelius201 Год назад
Doesn’t always work… talking about the partial fraction
@carultch
@carultch 9 месяцев назад
It works as long as there aren't quadratic terms, or other irreducible polynomials beyond linear terms. Otherwise, you get interdependent unknown coefficients.
@SaninSelimovic-zh8eq
@SaninSelimovic-zh8eq Год назад
F(s)= s^2+2s+1 / s(s^2+2s+5)
@SaninSelimovic-zh8eq
@SaninSelimovic-zh8eq Год назад
can you solve this task?
@carultch
@carultch 9 месяцев назад
​@@SaninSelimovic-zh8eq Given: F(s) = (s^2+2*s+1)/(s*(s^2+2*s+5)) Complete the square on the denominator: F(s) = (s^2+2*s+1)/(s*((s+1)^2+4)) Set up partial fractions for a linear denominator term (A/s), and a quadratic denominator term (linear numerator), using the shifted value of s instead of just s. You'll see why this helps: F(s) = A/s + (B*(s + 1) + C)/((s+1)^2 + 4) Heaviside coverup finds A for us, at s=0: A = (0^2+2*0+1)/(covered*(0^2+2*0+5)) = 1/5 Reconstruct what remains: (s^2+2*s+1)/(s*((s+1)^2+4)) = 1/5/s + (B*(s + 1) + C)/((s+1)^2+4) Let s = -1, to solve for C. Notice that B cancels out: ((-1)^2+2*(-1)+1)/((-1)*((-1+1)^2+4)) = 1/5/(-1) + (B*((-1) + 1) + C)/((-1+1)^2+4) 0 = -1/5 + C/4 C = 4/5 Reconstruct what remains: (s^2+2*s+1)/(s*((s+1)^2+1)) = 1/5/s + (B*(s + 1) + 4/5)/((s+1)^2+4) Let s = -2, to solve for B. We choose -2, so all the (s+1)^2 terms become 1. ((-2)^2+2*(-2)+1)/(-2*((-2+1)^2+4)) = 1/5/(-2) + (B*(-2 + 1) + 4/5)/((-2+1)^2+4) -1/10 = -1/10 + (-B+ 4/5)/2 Solve for B: B = 4/5 Partial fraction result: F(s) = 1/5*[1/s + (4*(s + 1) + 4)/((s+1)^2+4)] Arrange to look like standard Laplace transforms: F(s) = 1/5*[1/s + 4*(s + 1)/((s+1)^2+4) + 2*2/((s+1)^2+4)] Inverse Laplace: f(t) = 1/5 + 1/5*e^(-t)*[4*cos(2*t) + 2*sin(2*t)]
@papercircuit411
@papercircuit411 Год назад
Common W
Далее
Inverse Laplace Transform, Sect 7.4#33
7:54
Просмотров 75 тыс.
Inverse z-transform for multiple poles case
8:35
Просмотров 6 тыс.
Inverse Laplace Transform Using The Residue Theorem
4:24
Inverse Laplace of Complex-Conjugate Poles
18:12
Просмотров 51 тыс.
Residue Theorem to Calculate Inverse Z-Transform
9:07
Просмотров 102 тыс.