Тёмный

Instantaneous Center of Zero Velocity (learn to solve any problem step by step) 

Question Solutions
Подписаться 90 тыс.
Просмотров 182 тыс.
50% 1

Опубликовано:

 

14 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 200   
@FakieRecon
@FakieRecon 3 года назад
Damn man I'm so glad I found this channel because ever since I bombed my last exam I started watching your videos and now I understand the material way more. I thought I was going to have to retake Dynamics, but you saved my grade. Keep up the good videos man!
@QuestionSolutions
@QuestionSolutions 3 года назад
I am super glad to hear this helped you understand the material. I wish you the best with your next exams, and I hope you pass dynamics! 👍
@carsonvessar3763
@carsonvessar3763 2 года назад
I found this channel kinda late in the semester so Im really fighting for my grade but this channel is the only thing keeping me afloat
@AifelJadeRegunay
@AifelJadeRegunay 11 месяцев назад
3 mins in to the vid and i already understand the whole lesson, really top tier sir! massive respect!
@QuestionSolutions
@QuestionSolutions 11 месяцев назад
Glad it helped! Keep up the awesome work :)
@loopilicous
@loopilicous 3 года назад
Oh my goodness you are so helpful! Thank you and please keep the videos coming! Perhaps consider doing other topics too such as solids, materials, etc.?
@QuestionSolutions
@QuestionSolutions 3 года назад
You're very welcome. I hope to branch out to many different subjects, though time has been my enemy so far. Thank you very much for your comment, best of luck with your studies!
@nolanandy4203
@nolanandy4203 3 года назад
@Elian Camilo thanks so much for your reply. I found the site thru google and I'm trying it out atm. Takes quite some time so I will reply here later with my results.
@USERDISABLEDDJSLAYER12
@USERDISABLEDDJSLAYER12 2 года назад
You’re so under rated!! More people should know this channel. Thank you so much for helping us understand these lessons. Definitely will share this with everyone!
@QuestionSolutions
@QuestionSolutions 2 года назад
Thank you! I really appreciate the share :)
@camerongillespie870
@camerongillespie870 3 года назад
Exam prep this evening. I am very grateful for your videos. Many thanks.
@QuestionSolutions
@QuestionSolutions 3 года назад
You're very welcome. Best of luck with your exam! :)
@erickcastellanos6814
@erickcastellanos6814 10 месяцев назад
I literally love you. The visuals are so amzing and easy to understand! I love how you provide examples as well and acknowlege that examples help clarify concepts/ help learners see the concept in action.
@QuestionSolutions
@QuestionSolutions 10 месяцев назад
I’m so glad to hear that you found the visuals and examples helpful! Your feedback is greatly appreciated and I’m thrilled to hear that the examples are helping. Thank you for your kind words! 😊
@woodsmith_1
@woodsmith_1 5 месяцев назад
You're the best, man. You're helping so many people. Thank you!!
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
Happy to help! Keep up the great work and best wishes with your studies :)
@couple_j
@couple_j 7 месяцев назад
Thankyou so muchh. Finally understood instantaneous velocity. U explained it better than most college prof.
@QuestionSolutions
@QuestionSolutions 7 месяцев назад
Glad to hear that! Keep up the awesome work.
@bonkgaming3646
@bonkgaming3646 Год назад
Thank you so much for everything you do for us, you're really a kind soul, i can't thank you enough for what you do, i have my mechanics exam in 2 days and you've taught me everything i needed to know, thank you ❤️
@QuestionSolutions
@QuestionSolutions Год назад
You are so welcome! What a nice comment, thank you for taking the time to write it. I wish you the best with your exam, you'll do great! Keep up the awesome work ❤
@bonkgaming3646
@bonkgaming3646 9 месяцев назад
​@QuestionSolutions Im here again after completing my engineering, still owe a lot to this channel, you'll be remembered always
@hammy2779
@hammy2779 Год назад
Youre the goat 🐐 Thanks so much for making it so much more easier to understand. You explained it in 5minutes compared to my lectures that takes 2 hours 😂
@QuestionSolutions
@QuestionSolutions Год назад
Thank you very much! Glad to hear it was easier to understand :)
@steve8219
@steve8219 3 года назад
I paid almost $50000 per year to study in Engineering, found out free youtube videos better than professor's lectures
@QuestionSolutions
@QuestionSolutions 3 года назад
😅 Glad to hear these videos helped! Best wishes on your studies.
@timothyediu1785
@timothyediu1785 5 месяцев назад
In reality we're just paying for papers
@jamesruka6613
@jamesruka6613 10 месяцев назад
I'm really thankful , very short and simple
@QuestionSolutions
@QuestionSolutions 10 месяцев назад
You are welcome :) Keep up the awesome work.
@samuelbeer7587
@samuelbeer7587 3 года назад
Got an exam in 2 days and you may have just saved my degree, why my lecturers don't teach like this I will never know ahah
@QuestionSolutions
@QuestionSolutions 3 года назад
I wish you the absolute best on your exam. Do lots of practice questions and do your best! 👍
@QuestionSolutions
@QuestionSolutions 3 года назад
@Canadian Biscuit I don't know who that is 😅
@samuelbeer7587
@samuelbeer7587 3 года назад
@@QuestionSolutions Thank you! I got a First-Class, so i'm very pleased. Thank you very much for the truly amazing content you produce :)
@QuestionSolutions
@QuestionSolutions 3 года назад
@@samuelbeer7587 Glad to hear! Well done :)
@peterisraeil8124
@peterisraeil8124 5 месяцев назад
Again!! the least that I can do is thank you sincerely for your amazing work my good sir 👏
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
You're very welcome! :)
@Alexis-uo8jq
@Alexis-uo8jq 5 месяцев назад
amazing videos, definitely what I imagine how MIT professors teach like! Hopefully this dude is doing some good engineering in a good company!
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
Thank you very much :)
@a.shibeshi2276
@a.shibeshi2276 3 года назад
Thank you very much. It is so amazing how you make it very easy to understand. I am going to share it will all of my classmates now!
@QuestionSolutions
@QuestionSolutions 3 года назад
Thank you so much! I really appreciate the shares and your kind comment.
@gehadyasser1001
@gehadyasser1001 Год назад
Seriously u explain things very clearly thanks a lot !!
@QuestionSolutions
@QuestionSolutions Год назад
I am happy to hear that. You are very welcome and keep up the good work!
@TarickWalcott
@TarickWalcott 2 года назад
Wow 10/10. Really great explanation!
@QuestionSolutions
@QuestionSolutions 2 года назад
Thank you very much. Really appreciate it.
@Nightfieldzop
@Nightfieldzop 3 года назад
Very helpful thank you!
@QuestionSolutions
@QuestionSolutions 3 года назад
Glad it was helpful! Best of luck with your studies!
@CuteAnimals-zi2cc
@CuteAnimals-zi2cc 3 года назад
fabulous work brother
@QuestionSolutions
@QuestionSolutions 3 года назад
Many thanks 👍
@ericcabrera8239
@ericcabrera8239 11 месяцев назад
Hello, Very Good video! Do you just assume the direction of the velocity arrow or is there something behind it?
@QuestionSolutions
@QuestionSolutions 11 месяцев назад
You're just assuming. If you get a negative sign for your answer, then it's opposite to your assumption. But you can usually make a very good guess as to the direction just by visualizing how something moves.
@hassankhalil9184
@hassankhalil9184 2 года назад
Great video as always, quick question though, at 5:05 , why did we use r(B/IC) to solve for W(BC) in the equation VB = W(BC)*r(B/IC), why didnt we use the bar BC lengh of .5m instead of the r(B/IC) lengh? Also in this case when we use the equation relating the velocities at the instanteous center, VB = VA + W(BC)x(r(IC)) what would VA = 0 be in this moment? Like which linear velocity is that?
@QuestionSolutions
@QuestionSolutions 2 года назад
You canuse the 0.5 m if it's a simple rotation about a fixed axis. Here though, that's not the case. We have a fixed slot "C" and point B which is dependent on bar AB. When we calculate VB, you can think of it as bar BC disappearing, and you will see that bar AB going back and forth about point A. If we do the same for bar AB, and think of it disappearing, where does bar BC rotate about? It's dependent on the other bar so you have to use relative velocity or instantaneous center of zero velocity to figure it out. For this problem, you don't use VA, you would compare VB to VC to use relative velocity.
@hassankhalil9184
@hassankhalil9184 2 года назад
@@QuestionSolutions you are the best, I have watched other videos and it make total sense now, thanks for replying.
@kmoydaye9866
@kmoydaye9866 2 года назад
Best video explanation on the topic.
@QuestionSolutions
@QuestionSolutions 2 года назад
Glad to hear! 👍
@noobdev99
@noobdev99 3 года назад
Which software do you use for such amazing animations
@QuestionSolutions
@QuestionSolutions 3 года назад
After effects 👍
@noobdev99
@noobdev99 3 года назад
@@QuestionSolutions forgot to mention your videos are awesome
@QuestionSolutions
@QuestionSolutions 3 года назад
@@noobdev99 Many thanks :)
@jaholden4
@jaholden4 6 месяцев назад
great examples thank you
@QuestionSolutions
@QuestionSolutions 6 месяцев назад
You're very welcome!
@AhmadAryan2013
@AhmadAryan2013 8 месяцев назад
Best ever lecture!!!!
@QuestionSolutions
@QuestionSolutions 8 месяцев назад
Thank you very much!
@Mechomittencaterpillar
@Mechomittencaterpillar 3 года назад
so for the first example, when we get the answer at 3:41, is this the angular velocity of the link about the IC or is it the angular velocity about either B or C?
@QuestionSolutions
@QuestionSolutions 3 года назад
This is the angular velocity of link BC. They are not separate entities, it's a single link. So we just name it link BC. Also, the IC point doesn't change the angular velocity of link BC (so we aren't saying it's about the IC point), it's just a different method to get the angular velocity instead of using relative velocity. I think, at least from your previous questions as well, you might be confusing linear velocity and angular velocity. You can calculate linear velocity at point B or C. When we say angular velocity of link BC, that is for the whole member. That is the angular velocity of the metal rod. 👍
@Mechomittencaterpillar
@Mechomittencaterpillar 3 года назад
@@QuestionSolutions oh ok, thanks!
@QuestionSolutions
@QuestionSolutions 3 года назад
@@Mechomittencaterpillar You're very welcome!
@insi_gaming
@insi_gaming 2 года назад
Bruh you making my life easier honestly 😂❤
@QuestionSolutions
@QuestionSolutions 2 года назад
I am glad to hear it! ❤
@isaiahzerface4554
@isaiahzerface4554 Год назад
Love the videos, saving my grade for real. I just don’t understand what the point of this method is though. Why couldnt we just use the relative velocity method for these problems?
@QuestionSolutions
@QuestionSolutions Год назад
Glad to hear you like these videos. To answer your question, it's just another method to get to the solution. Its better to know more than one way. 👍
@sterlingrawls
@sterlingrawls Год назад
got an exam in 5 minutes! thanks so much
@QuestionSolutions
@QuestionSolutions Год назад
Best wishes with your exam! You got this.
@sterlingrawls
@sterlingrawls Год назад
@@QuestionSolutions thanks exam went well and I’m so glad I looked at your video before my exam bc it was simple and easy to follow
@QuestionSolutions
@QuestionSolutions Год назад
@@sterlingrawls I am really happy to hear that! Keep up the great work and best wishes with your future endeavors.
@tommyminahan3136
@tommyminahan3136 Год назад
I tell everyone that I study with to go watch your videos lol keep it up!
@QuestionSolutions
@QuestionSolutions Год назад
Thank you so much for the shares, I really appreciate it.
@antiquarian1773
@antiquarian1773 3 года назад
What an absolute god. Thanks dude :)
@QuestionSolutions
@QuestionSolutions 3 года назад
You're welcome! :)
@kanhchanaly6445
@kanhchanaly6445 3 года назад
Hi sir, I have a question. At 6:04 should I always draw the radial line of IC towards the touching point of the two cylinders? Thank you.
@kanhchanaly6445
@kanhchanaly6445 3 года назад
I’m confused because when I’m doing other examples where the point of interest isn’t at the center of the circle, I don’t know which direction I should draw the radial IC line to, I hope you understand my question...
@QuestionSolutions
@QuestionSolutions 3 года назад
@@kanhchanaly6445 Yes, the IC point would be where the wheel makes contact. For example, if a wheel was rolling on the floor, the IC point would be straight down at the point where it touches the ground.
@kanhchanaly6445
@kanhchanaly6445 3 года назад
@@QuestionSolutions thank you so much!
@QuestionSolutions
@QuestionSolutions 3 года назад
@@kanhchanaly6445 You're very welcome!
@clearflow7925
@clearflow7925 10 месяцев назад
0:39 when do we use the vector formula and when do we use the scalar formula?
@QuestionSolutions
@QuestionSolutions 10 месяцев назад
It depends on the question. If all your values are given in cartesian form, use a vector formulation, if you can easily solve it using scalar, use scalar. Both methods will give the same answer in the end.
@clearflow7925
@clearflow7925 10 месяцев назад
@@QuestionSolutions ahhh make sense
@muhdsyafiq2978
@muhdsyafiq2978 11 месяцев назад
how to choose when to use relative motion or instantaneous center? Or is both method applicable for the same type of question?
@QuestionSolutions
@QuestionSolutions 11 месяцев назад
You can use whatever method you like to solve these problems. It's completely up to you. Sometimes, you won't have the givens to use the instantons center of zero velocity, in which case, you should use the relative motion analysis.
@user-ml7nt2sq9f
@user-ml7nt2sq9f 3 года назад
you deserve more subscribers
@QuestionSolutions
@QuestionSolutions 3 года назад
:) Many thanks!
@umiturgutaswwsa
@umiturgutaswwsa Год назад
Nice explanation
@QuestionSolutions
@QuestionSolutions Год назад
Many thanks!
@padamyonjan5608
@padamyonjan5608 6 месяцев назад
Could you please explain if the solution holds true if both cylinder are rotating. How to find IC?
@QuestionSolutions
@QuestionSolutions 6 месяцев назад
It's hard to say without seeing a question. Did you ask your professor or TA in person?
@padamyonjan5608
@padamyonjan5608 6 месяцев назад
@@QuestionSolutions I did seek for help. Could't get it through though. I feel ashamed for asking same question again so I'm looking for solution online. The picture can be found in google. The question goes like this if you could help. Gear A rotates counterclockwise with a constant angular velocity of Omega A=10rad/s, while arm DE rotates clockwise with an angular velocity of Omega DE =6rad/s and an angular acceleration of alpha DE =3rad/s2 . Determine the angular acceleration of gear B at the instant shown. I found the solution to this question online BUT I'm following your technique of IC and couldn't get the same answer. I'm wondering if both rotates then the way of finding IC changes.
@krypton9773
@krypton9773 3 года назад
Thank you so much❤️❤️btw I've got a question, I have a problem comprehending the purport of this method. When we say we assume point A has no velocity, does it mean we assume it's fixed? If that's the case , in the previous method , we also assumed(as an example) point A is fixed but it was moving? And another thing is that: When is it allowable for us to use this method?
@QuestionSolutions
@QuestionSolutions 3 года назад
So you can use this method whenever enough information about the geometry of the problem is given. If you have a question where you need to find the velocity of a point and you're given distances and angles, use this method, it'll get you to an answer faster than using relative velocity. Also, keep in mind, this only works with velocity, not with acceleration. We aren't saying point A has no velocity, we are just ignoring it because we are using the instantaneous center of zero velocity point. So if you saw the previous video about relative velocity, we compared one point (point A), to another unknown point (point B), and figured out the velocity using a position vector from A to B. Here, instead of that, we use the IC point, so no position vector from A to B, and we can just forget about the velocity at point A. You can imagine a single object rotating about this IC point and that's really what's happening behind the scenes. Your textbook should give a more detailed analysis of this method along with the proof. 👍
@krypton9773
@krypton9773 3 года назад
@@QuestionSolutions THANK YOUUUU SOOOOO MUUUUCHHHH😭😭😭😭
@QuestionSolutions
@QuestionSolutions 3 года назад
@@krypton9773 You're welcomeeeeeeeeee 😅
@kyleweir9175
@kyleweir9175 Год назад
thanks for the help
@QuestionSolutions
@QuestionSolutions Год назад
Happy to help!
@isharauditha4257
@isharauditha4257 3 года назад
it is so helpful thank you so much
@QuestionSolutions
@QuestionSolutions 3 года назад
You're very welcome! :)
@charlesfield9286
@charlesfield9286 11 месяцев назад
fantastic! thanks
@QuestionSolutions
@QuestionSolutions 11 месяцев назад
You're welcome! Best wishes with your studies.
@falkelany6865
@falkelany6865 3 года назад
Thank you very it's very helpful 🌷
@QuestionSolutions
@QuestionSolutions 3 года назад
You're very welcome!
@aseniyasanhinda2663
@aseniyasanhinda2663 Год назад
Thank you very much!😘
@QuestionSolutions
@QuestionSolutions Год назад
You're welcome 😊
@natalielow5455
@natalielow5455 Год назад
Does instantaneous centre of velocity help to determine the direction of the angular velocity as well? because I solved one problem with both velocity dynamics and the ic method only to find that the velocity dynamics method gives a negative when the angular velocity is clockwise, but the ic method does not
@QuestionSolutions
@QuestionSolutions Год назад
So generally speaking, it does give the direction since you can see how the object would move. For example, looking at 3:39, we established that the angular velocity of BC would be counter-clockwise. You don't need the answer to tell you that since you can see and imagine the object moving in your head. You know the direction it has to go since these involve fixed axes. Also remember, we with this method, you're getting scalar values where as with, for example, relative velocity, you can get vector answers.
@Jimmysmith465
@Jimmysmith465 2 месяца назад
For example 2. wouldn't vc=1.64. You said vc=wBC*rC/IC but wouldn't vC=wCB*rC/IC because it comes from vC=vB+wCB*rCB. Or does the order not matter is wCB=wBC
@QuestionSolutions
@QuestionSolutions 2 месяца назад
Order doesn't matter since it's a scalar value. So you can think of it in simple terms, the rod BC or CB, (same rod regardless of how you name it), has an angular velocity of 1.959 rad/s.
@EgeUyar
@EgeUyar Год назад
Nice Job !
@QuestionSolutions
@QuestionSolutions Год назад
Thanks!
@bvgm1835
@bvgm1835 3 года назад
Thank you so much!
@QuestionSolutions
@QuestionSolutions 3 года назад
You're very welcome!
@mariaalhijazeen4974
@mariaalhijazeen4974 5 месяцев назад
Hi just wanted to ask Can you explain how we got this equation At 6:07
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
It is the same equation shown at 0:41. It is the scalar method of finding velocity using angular velocity and a length. So in a rotating circle, the velocity at the very edge is equal to the angular velocity multiplied by the radius.
@md.akiduzzamanabir3815
@md.akiduzzamanabir3815 2 года назад
thank you so much
@QuestionSolutions
@QuestionSolutions 2 года назад
You're very welcome!
@yusefhamzeh1022
@yusefhamzeh1022 3 года назад
you're a legend
@QuestionSolutions
@QuestionSolutions 3 года назад
👍 You're too kind.
@talha3346
@talha3346 Год назад
Can you explain why in case of rolling wheel on ground without slipping, it's linear velocity on it's circumference equals zero at the instant it contacts with the ground. I know in case of gears their linear velocities are equal when they are meshed, make sense but here it seems the velocity can't be zero when contact with ground it should be same as when not in contact with the ground. Kindly elaborate.
@QuestionSolutions
@QuestionSolutions Год назад
I think this deutsch.physics.ucsc.edu/6A/book/torque/node16.html explains it well, but your textbook should also include a very good explanation too.
@talha3346
@talha3346 Год назад
I think I understand now, appreciate your response.
@yashchoudhari1613
@yashchoudhari1613 3 года назад
how is wbi = wbc, since you took vb = wbc x rbi, shouldn't the formula be vb = wbi x rbi?
@QuestionSolutions
@QuestionSolutions 3 года назад
Please kindly give a time stamp so I know where you're referring to. Thanks!
@emilianojimenez8034
@emilianojimenez8034 Год назад
why were you using scalar form instead of vector from in this video?
@QuestionSolutions
@QuestionSolutions Год назад
Because it's easier to use scalar with triangles and sine/cosine law.
@Vicienzo_tfox
@Vicienzo_tfox 3 года назад
Wow, that’s howesome, thanks!!
@QuestionSolutions
@QuestionSolutions 3 года назад
You're very welcome!
@jaronnsigey515
@jaronnsigey515 2 года назад
in the equation, V_B = W_BC(r_B/IC), why are we using the angular velocity of BC (W_BC) ???
@QuestionSolutions
@QuestionSolutions 2 года назад
Please kindly provide a timestamp so I know where to look. Many thanks!
@engineeringlecturesandexpe3091
@engineeringlecturesandexpe3091 2 года назад
Very well done ✅✅
@QuestionSolutions
@QuestionSolutions 2 года назад
Thank you very much!
@Goku2005whaa
@Goku2005whaa 5 месяцев назад
how is the instantaneous center form the start of the roll i dont understand plz tell me. in later examples
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
I don't know where you're referring to. Please use timestamps. Thanks!
@vindee
@vindee 10 месяцев назад
Bless you
@QuestionSolutions
@QuestionSolutions 10 месяцев назад
Thank you!
@aryagultom6231
@aryagultom6231 2 года назад
hello, can you explain how to use absolute motion analysis for example “3:54”
@QuestionSolutions
@QuestionSolutions 2 года назад
What do you mean by absolute motion analysis?
@omarbahgat5783
@omarbahgat5783 2 года назад
should not the vb @2:32 be in terms of I and j since we have an angle of 60 degrees and it is not flat surface?
@QuestionSolutions
@QuestionSolutions 2 года назад
VB is written as a scalar, not a vector :)
@sochimaumobi6622
@sochimaumobi6622 5 месяцев назад
Really important question, why is Vb=(Wbc)(Rb/ic) and not Vb=(Wab)(Rb/ic) 3:28
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
So notice how we used the segment BC to calculate the IC point. Then we use the angular velocity of that piece to figure out the linear velocity. If you use AB to figure out the IC point, you'd use the angular velocity of AB.
@Rarddddd
@Rarddddd 3 года назад
Can you make a video about velocity and acceleration polygons?
@QuestionSolutions
@QuestionSolutions 3 года назад
I will add it to my list, however, it probably won't get made for quite a while since it's going to be at the bottom 😅
@Rarddddd
@Rarddddd 3 года назад
@@QuestionSolutions thank you sir. You're such a blessing.
@reynjoker
@reynjoker 3 года назад
Can these problems be solved with the relative velocity method instead ?
@QuestionSolutions
@QuestionSolutions 3 года назад
Both methods can be used as long as you have the relevant givens. 👍
@harisahmed1617
@harisahmed1617 2 года назад
So much helpful video..m💝💝 ...
@QuestionSolutions
@QuestionSolutions 2 года назад
I am glad to hear that :)
@MashieMashie
@MashieMashie 7 месяцев назад
good channel💥💥💯
@QuestionSolutions
@QuestionSolutions 7 месяцев назад
Thank you very much!
@readbhagwatgeeta3810
@readbhagwatgeeta3810 3 месяца назад
At 3:29 shouldn't that angular velocity be w(B, IC), because it is angular velocity of B w.r.t IC. Why we are writing it as w(B,C)?
@QuestionSolutions
@QuestionSolutions 3 месяца назад
I am not sure I understand what you're asking. Are you asking about the notation being used?
@readbhagwatgeeta3810
@readbhagwatgeeta3810 3 месяца назад
No not notation. I am asking whether at 3:29 it should be wBC or wB/IC. How wBC = wB/IC​@@QuestionSolutions
@QuestionSolutions
@QuestionSolutions 3 месяца назад
@@readbhagwatgeeta3810 Where do you see wB/IC? You're just multiplying a distance labeled rB/IC by a variable labeled wBC. When you plug your values in, you get a solution for the variable wBC. I don't understand what you mean by "How wBC = wB/IC" where did we write that on the solution?
@programmingprograms726
@programmingprograms726 Год назад
GOAT!!
@QuestionSolutions
@QuestionSolutions Год назад
Thank you :)
@icu3545
@icu3545 2 года назад
3:35 . I don't understand how Wbc can be used in the formula Vb = Wbc * rb/ic. In other words how can Wbc be used to to calculate Vb, because point c is also moving right. So it doesn't really have a angular velocity. I am confused. Great vids btw !!
@QuestionSolutions
@QuestionSolutions 2 года назад
So what do you mean by "it doesn't really have a angular velocity?" Rod BC definitely has an angular velocity, otherwise, it wouldn't be moving. It fact, we even show it to have an angular velocity of 6.787 rad/s. So maybe I am not understanding what you are asking, or maybe you can rephrase the question? Point C will have a linear velocity, point B will have a linear velocity, and they will not be equal either. Let me know if that helps. 👍
@icu3545
@icu3545 2 года назад
@@QuestionSolutions Sorry for the confusement. Someone else asked a similar question which said, "in the equation, V_B = W_BC(r_B/IC), why are we using the angular velocity of BC (W_BC)"
@QuestionSolutions
@QuestionSolutions 2 года назад
@@icu3545 We use ω_BC because that's what we used for the perpendicular lines. We found the IC point using rod BC, so that's what we need to use. That's the whole point of this idea, it's to use the IC point related to a rod, and use that to figure out the velocity at any given point on the said rod. We can't use AB since we didn't find the IC point with respect to rod AB. Another way to think about this is to imagine rod BC rotating about the IC point. It might make it more clear that all we are doing is multiplying the distance from the IC point by the angular velocity of BC. Remember that in the scalar form, we can find the linear velocity by simply multiplying the distance from the axis of rotation to the point where we are finding the linear velocity, it's v=ωr. So all we do is just figure out this "rotation point" which is the IC point, then figure out the distance and multiply it by the angular velocity. Does that make sense? :)
@icu3545
@icu3545 2 года назад
@@QuestionSolutions Aha, I understand. Amazing explanation. Thank you so much sir!!!
@QuestionSolutions
@QuestionSolutions 2 года назад
@@icu3545 I am really happy to hear you understand it! Best wishes with your studies 👍
@adityapandey8096
@adityapandey8096 3 года назад
At 6:09 How do you know that y component of velocity of the point of contact of cylinders is zero.
@adityapandey8096
@adityapandey8096 3 года назад
basically you wanna say that the point of contact of cylinders has neither X nor y component of velocity basically zero velocity
@QuestionSolutions
@QuestionSolutions 3 года назад
Because velocity is tangent to the rod, so you can see the rod is straight upwards, which means velocity is horizontal, only has an x-component.
@volkanyurdabakan3746
@volkanyurdabakan3746 Месяц назад
Hello, how did we find 60 degrees in the first question?
@volkanyurdabakan3746
@volkanyurdabakan3746 Месяц назад
Rb/ıc next to
@volkanyurdabakan3746
@volkanyurdabakan3746 Месяц назад
I think there is an impossible
@QuestionSolutions
@QuestionSolutions Месяц назад
@@volkanyurdabakan3746 It's given in the question in the diagram.
@volkanyurdabakan3746
@volkanyurdabakan3746 Месяц назад
Sorry . I understand this problem thanks
@imrightandyourewrong6404
@imrightandyourewrong6404 2 года назад
Omg, perfect
@QuestionSolutions
@QuestionSolutions 2 года назад
😀
@BODYBUILDERS_AGAINST_FEMINISM
@BODYBUILDERS_AGAINST_FEMINISM 2 года назад
i love you say it back
@QuestionSolutions
@QuestionSolutions 2 года назад
❤️
@tonyn300
@tonyn300 Год назад
3:25 i don't get this step at all. It's using angular velocity of BC but the r_(B/IC), can someone explain this to me? doesn't solving this equation give the angular velocity about the instantaneous center? Namely (omega_IC). Unless omega_IC=omega_BC, but I don't see how that's the case.
@QuestionSolutions
@QuestionSolutions Год назад
So the cool thing about this method is that by multiplying the angular velocity by the instantaneous center distance, you actually end up getting the velocity of the link. Remember that velocity is just angular velocity multiplied by the distance from the axis of rotation. Here, we are pretty much doing the same thing, but now, we are just imagining the rod rotating about the IC point. The proof for this should be in your textbook, (if not, a quick search should allow you to find it). Also, I think doing a few questions will allow you to visualize what's actually happening, and this technique will become really helpful in the future for some problems where going through the traditional method of relative velocity can be tedious.
@e-nes4042
@e-nes4042 2 года назад
3.40 why did we add Vc ? it is not fixed... it has velocity
@e-nes4042
@e-nes4042 2 года назад
aaa we got ıc so it is fixed but Wbc confused me
@QuestionSolutions
@QuestionSolutions 2 года назад
I don't see VC at 3:40? Please let me know where to look.
@Jaullesparacomisso
@Jaullesparacomisso 5 месяцев назад
how come rB/IC not the same as BA?
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
I don't know where you're referring to. Please use timestamps. Thanks!
@co4erol
@co4erol 3 года назад
Thanks I like animations
@QuestionSolutions
@QuestionSolutions 3 года назад
Thank you.
@ggxsky4811
@ggxsky4811 8 месяцев назад
Do I need to watch previous videos before watching this
@QuestionSolutions
@QuestionSolutions 8 месяцев назад
Best answer I can give is, watch it and see, if you find things unfamiliar, then watch the previous videos to help with your foundational knowledge.
@edwardmouawad9443
@edwardmouawad9443 5 месяцев назад
why rD/IC=3
@QuestionSolutions
@QuestionSolutions 5 месяцев назад
I don't know where you're referring to. Please use timestamps. Thanks!
@nikunjpatil2074
@nikunjpatil2074 2 года назад
👍
@QuestionSolutions
@QuestionSolutions 2 года назад
👍👍
@isaac3055
@isaac3055 3 года назад
Stuff like this cannot be explained on a 2D whiteboard.
@QuestionSolutions
@QuestionSolutions 3 года назад
It can be hard to visualize.
@DietCokeIsGoodForYou
@DietCokeIsGoodForYou 3 года назад
My professor making these problems so weird. instead of adding I j and k comments he draws entire pictures and puts them into equations lo
@QuestionSolutions
@QuestionSolutions 3 года назад
Maybe that works for some students, not sure 😅
Далее
НИКИТА ПОДСТАВИЛ ДЖОНИ 😡
01:00
Просмотров 164 тыс.
ROBLOX TRAND AGAIN. Part 7☠️🗿🙋🏻‍♀️
00:16
Instantaneous centre of zero velocity
12:21
Просмотров 7 тыс.
Solving one of the toughest Indian exam questions
21:12
Gravity Visualized
9:58
Просмотров 139 млн
Richard Feynman: Can Machines Think?
18:27
Просмотров 1,5 млн