Тёмный

Network Architecture Search: AutoML and others 

Leo Isikdogan
Подписаться 27 тыс.
Просмотров 9 тыс.
50% 1

Опубликовано:

 

30 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 23   
@satyajitdas2780
@satyajitdas2780 5 лет назад
Thanks, Leo. Thanks for the research paper, it was informative.
5 лет назад
Sometimes I think we're(and media) exaggerating neural networks who are actually "universal function approximators". Good content btw.
@leoisikdogan
@leoisikdogan 5 лет назад
True, there is certainly a hype. Thanks!
@kemchobhenchod
@kemchobhenchod 4 года назад
That is a really good point
4 года назад
@Glid yes, kinda. But sometimes we cannot build it. I m working on physics modelling and you can model up to certain degree. We cannot use NN because its not feasible search all results space. This is costly and useless since there are a lot of parameters. But also our physical (and logical) models can go up to some extent. However, how can you derive a function for image classicitaon? Yes its hyped but, I dont mean that. Its overfunded i think. There are so much to do for science and its other valuable topics. We do not know its consequences. We may hate all the benefits of overfunding ( which are good contributions to our life) after some year. And I m not sure how it ll continue like that without solving inefficiency, interpretability, inexplainability, insufficiency, inflexibility problems. Academia is %60 doing applications %35 improving these models %5 working on problems i mentioned. Of course percentages are wrong, but i think you got the point.
@daluwang
@daluwang 3 года назад
Very good overview of non recent development
@mathlibrary3073
@mathlibrary3073 3 года назад
Very good explantation and easy to follow. Thanks!
@richarda1630
@richarda1630 3 года назад
Thank you for this! When life give you lemons...
@wilfredorivera1691
@wilfredorivera1691 5 лет назад
Very informative. Thank you!
@angtrinh6495
@angtrinh6495 Год назад
Wonderful and informative knowledge acquired :)
@kdsuch
@kdsuch 4 года назад
Great work! Thank you very much! :) Really helped for my exams.
@dumbledoor9293
@dumbledoor9293 4 года назад
Thank you for an informative video. However I'm still left with the question: Are these methods worth it, and if so, when are they better than manual optimization?
@subscriber9743
@subscriber9743 5 лет назад
Amazing video
@nouraaliabuhlega4023
@nouraaliabuhlega4023 5 лет назад
Thank you
@emersonmicu1683
@emersonmicu1683 5 лет назад
Great content! What kind of software you're using for drawings like at 4:30?
@leoisikdogan
@leoisikdogan 5 лет назад
Thanks! I used Microsoft OneNote in this one.
@pooranmashi3003
@pooranmashi3003 4 года назад
Sir, finding difficulty in learning neural network
@y2496
@y2496 5 лет назад
Who's here form mkbhd
@milindspandit
@milindspandit Год назад
Great survey of approaches! In this video, they reproduce some of the results from the ENAS paper: ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-Ut97E9K-ai0.html
@house625xx
@house625xx 5 лет назад
please use better microphone or better sound process
Далее
How to Design a Neural Network | 2020 Edition
9:45
Просмотров 22 тыс.
МЖ. Может, папа - ты? 16.02.2023
40:03
Просмотров 204 тыс.
Convolutional Neural Networks Explained
14:31
Просмотров 47 тыс.
How to Design a Convolutional Neural Network
11:47
Просмотров 48 тыс.
MIT Introduction to Deep Learning | 6.S191
1:09:58
Просмотров 678 тыс.
Artificial Neural Networks: Going Deeper
10:04
Просмотров 11 тыс.
Google Brain - Neural Architecture Search - Quoc Le
21:17