Тёмный

Proof: Derivative of e^x is e^x 

MasterWuMathematics
Подписаться 22 тыс.
Просмотров 36 тыс.
50% 1

In this video, we follow the definitions of the derivative and the number e to prove that the derivative of e^x is indeed equal to e^x.
#Calculus #Differentiation #Exponential
Thanks for watching. Please give me a "thumbs up" if you have found this video helpful.
Please ask me a maths question by commenting below and I will try to help you in future videos.
I would really appreciate any small donation which will help me to help more math students of the world. Please donate here: paypal.me/Mast...
Follow me on Twitter! MasterWuMath

Опубликовано:

 

27 сен 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 62   
@LarsSandgren
@LarsSandgren 7 месяцев назад
Me during the first part of the video: Isn't he just going in circles?.. Me during second part of the video: We are just going in circles.... Me during final part of the video: WE ARE SUPPOSED TO GO IN A CIRCLE!!! I don't know who made this proof but, hot diggity it is jaw dropping
@abouillet5147
@abouillet5147 22 дня назад
it's kind of a redundant proof actually. you can simply set m=1/deltax (delta x->0, m->inf), then sub in and get e^x * lim m-> inf of m(e^(1/m)-1), where in the limit, e^(1/m) becomes 1, then the term in brackets becomes (1-1) and collapses the limit leaving you with e^x
@bejjwkwnsb7q777
@bejjwkwnsb7q777 2 года назад
Thank you very much. This is the best proof I've seen so far. The other ones here on RU-vid usually involve some kind of unsatisfactory implicit differentiation. Not this one!
@philw9102
@philw9102 Год назад
Thank you, I found this really clear. Including approaches that didn’t work was very helpful too (I’ve watched other ‘proofs’ that evaluated 0/0 as 1 with no justification).
@renesperb
@renesperb Год назад
If the chain rule and the derivative of the log-function is known ,then there is a very fast and simple proof: set y(x) = e^x and use that d/dx(ln y(x)) =1/y(x) *y'(x) ,but by definition ln(e^x) = x ,hence we have 1/y(x) * y'(x) = 1,that is (e^x) ' = e^x.
@MasterWuMathematics
@MasterWuMathematics 11 месяцев назад
But what if that derivative is not known??
@oscarludwinmalaveranarcaya7080
Best proof of this derivative, others imply knowing what Taylor series is but that's ridiculous if we're working with the definition of derivatives
@Xayuap
@Xayuap 2 года назад
this one was satisfactory I rather predefine e than predefine a magical exp
@geraldvaughn8403
@geraldvaughn8403 8 месяцев назад
How did you bring the limit inside the natural log? What rule is that?
@phlaelo866
@phlaelo866 7 месяцев назад
The limit doesn’t affect anything outside the log so it doesn’t matter. It’s functionally the same
@ranjansingh9972
@ranjansingh9972 4 месяца назад
Natural log is monotonic. I believe that allows us to 'jump' the limit on the inside. Vaguely remember this from somewhere.
@doyourealise
@doyourealise Год назад
amazing! thanks a ton, subscribed! wil be finishing all of your videos.
@soured7967
@soured7967 Месяц назад
best explanation ever, tyvvvvm
@ksmyth999
@ksmyth999 11 месяцев назад
Thanks for the video. I think it was well presented. But I wouldn't say it is based on first principles, because you have already made an assumption about e. Is it not possible to only assume there is a function such that f''(x) = f(x) and then derive its characteristics? The function would be k^x. One would then have to determine a value for k. Or is this not possible? I suppose as with most theorems or derivations, the problem is deciding where the buck stops.
@MasterWuMathematics
@MasterWuMathematics 11 месяцев назад
Thank you for your comment. Very good! That’s what mathematics is all about. What I meant from first principles is I’ve formulated the result based on the definition of the what a derivative is. And I have not assumed e as such, because that’s what is is defined as as well. What you’re proposing I’m sure there’s a way but it will not be within the scope of my math channel. My goal with my channel over the next few years is to steer it toward solving mathematical problems in engineering and physics (i.e. applied mathematics). Calculus is very important to these fields which is why I’m covering it extensively.
@JessicaShaw-ym4vc
@JessicaShaw-ym4vc 8 месяцев назад
@@MasterWuMathematics Hiya! How did you define e in terms of m? I understand how you manipulated it, just not how you found it. Thanks!
@dqrksun
@dqrksun 2 года назад
Nice proof sir
@nynthes
@nynthes Год назад
Hi, what program do you use to make these videos?
@uvuvwevwevweonyetenyevweug5884
@uvuvwevwevweonyetenyevweug5884 6 месяцев назад
How about we say that e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!... Since e^x is optimal growth. And if we derive this we find 0+1+x/1!+x^2/2!+x^3/3!... And so on. Hence e^x is equal to its derivative.
@MundiaMukelabai
@MundiaMukelabai 6 месяцев назад
the video is well explain but I only have one question. can you show us where and why e is defined as given in the video because we just adopted it and not shown it also how e is defined by the supposed given limit
@tzbq
@tzbq 5 месяцев назад
I'm pretty sure that's just the original definition of e, idk why tho
@tahmidislamtasen1602
@tahmidislamtasen1602 Год назад
Best proof found on internet
@MasterWuMathematics
@MasterWuMathematics 11 месяцев назад
Thank you very much!
@spudhead169
@spudhead169 4 месяца назад
Right at the start you have circular reasoning. You see, d/dx e^x = e^x IS a definition of e. Such that e is the only value of n that satisfies d/dx n^x = n^x. All definitions are equivalent, so what you are doing by taking the definition of e at the start is effectively saying: to prove d/dx e^x = e^x, we first start by asserting d/dx e^x = e^x. You see the problem? Using the limit definition of e is exactly the same as using the derivative definition of e. But more than that, YOU CANNOT PROVE A DEFINITION, if you could you wouldn't need it to be a definition in the first place. No matter what you do, you simply cannot prove it without some kind of circular reasoning. Maybe we will develop the maths tools someday that allow us to prove the value of e, but until then, we can only define it.
@ruzgar1372
@ruzgar1372 5 месяцев назад
really good proof
@katiatzo
@katiatzo 11 месяцев назад
THANK YOU!
@MasterWuMathematics
@MasterWuMathematics 11 месяцев назад
You’re welcome!
@AscendantPerfection
@AscendantPerfection 5 месяцев назад
Beautiful ❤️
@stefankrimbacher7917
@stefankrimbacher7917 2 года назад
Very nice.
@Xayuap
@Xayuap 2 года назад
it is not the only f(x) = 0 = f'(x) also, for instance
@MurshidIslam
@MurshidIslam Год назад
All f(x) = ce^x has that property where c is a real number. When c = 0, we get your example.
@a_man80
@a_man80 Год назад
y'=y, y'/y=1 (y≠0), ln|y|=x+c |y|=e^(x+c)=e^x•e^c=Ce^x (C=e^c) y1=Ce^x , y2=-Ce^x , check y=0 0'=0 , y=Ce^x , C is a real number
@michaeltajfel
@michaeltajfel Год назад
You need to add the ‘initial condition’ y(0) = 1
@dr.rahulgupta7573
@dr.rahulgupta7573 Год назад
Sir We can use the definition of e^h (in terms of factorials of natural numbers and different powers of h .) to find the value of ( e^h --1)/h. when h tends to zero . Clearly it is 1 . Hence d/dx. e^x =e^x . proved .
@justafunnyclown6831
@justafunnyclown6831 Год назад
As he said when h tends zero than the value will be undefined 0/0
@Happy_Abe
@Happy_Abe 4 месяца назад
Not the only function. Also y=0
@fsponj
@fsponj 3 месяца назад
I used to think so but then I realised that any multiple of e^x is also it's own derivative (a*e^x)'=a*e^x. If we set a=0 → (0)'=0. So the derivative of f(x)=0 is just a special case of f(x)=f'(x)=a*e^x
@Happy_Abe
@Happy_Abe 3 месяца назад
@@fsponjright!
@timm1328
@timm1328 9 месяцев назад
the exponential function is defined as that unique function that is its own derivative. proof is not necessary.
@englishfortelugupeoples
@englishfortelugupeoples 4 месяца назад
@samuelprieto3873
@samuelprieto3873 2 года назад
Coulda skipped a bunch of steps but still excellent proof ;)
@thecarlostheory
@thecarlostheory Год назад
Very nice
@idjles
@idjles Год назад
There is a kind of circular argument here. You’ve assumed without proof what e^irrational means. Usually a^x, where x is irrational , is defined via e^x, and then you have to prove that e^(a+b) =e^a*e^b, for all Real a,b, which you haven’t. But I like the substitution with the log - that is cool, and avoiding Taylor Series.
@ZipplyZane
@ZipplyZane Год назад
You can define irrational exponents with limits of their ratio al approximations. Using e^x or ln(x) is just a convenience. See the Math StackExchange question: "Can you raise a number to an irrational exponent?" for more information.
@Kzaman-yg5br
@Kzaman-yg5br Месяц назад
6:50 can I apply L Hospital rules because it is now 0/0 form.
@dinofish3262
@dinofish3262 3 дня назад
U can do that but you would need to take the derivative of m and ln(1+m). The proof is using first principles, which means all the information u have is the limit definition and algebra.
@timding6241
@timding6241 Год назад
At 3:56 , I do not understand why the e to the power of x is "independent" of the limit and can go to the front of the whole limit/right hand side. Many videos say the same thing but never explain that. Is there a video that explains that? Thank you!
@zx4706
@zx4706 Год назад
Observe that we are taking the limit of the expression (inside the limit) as h→0, meaning we only need to evaluate those terms or expressions containing the variable h. Since fhe factor e^x does not contain any variable h (hence, we call it independent), then it can be treated as a constant multiple of the expression, which can be put outside the limit expression per limit rule on constant multiples.
@NumbToons
@NumbToons 2 месяца назад
What a beautiful video and presentation
@hamidmohaddes2774
@hamidmohaddes2774 21 день назад
We can use lhopitalle rule
@ramoimas9792
@ramoimas9792 Год назад
You are the man. You are him. You know where the dog is, you know victoria's secret. You can see john cena. My pronouns are he not him. Cuase I can never be you.
@MasterWuMathematics
@MasterWuMathematics 11 месяцев назад
I'm nothing special, honestly. But thank you!
@satya7198
@satya7198 3 года назад
Great content sir
@MasterWuMathematics
@MasterWuMathematics 3 года назад
Thank you :)
@saravanarajeswaran2626
@saravanarajeswaran2626 2 месяца назад
on the other side , any function say a^x , the derivative would become a^x times limit as h approaches 0 of a^h - 1/h , which gives some random irrational number (which ln a) , so we would ask , so is there any number ,so that we take derivative the limit becomes 0, yes that is e , so most likely it is one of e definition you can say from another persepective
@ledinhvu-h5q
@ledinhvu-h5q 10 месяцев назад
exellent !
@MasterWuMathematics
@MasterWuMathematics 10 месяцев назад
Thank you!
@davydorynbaev
@davydorynbaev 2 года назад
Thank you!
@billtruttschel
@billtruttschel Год назад
Why are you allowed to move the limit inside the argument of the ln function?
@austinbradshaw5021
@austinbradshaw5021 Год назад
cause the ln function is being treated as a coefficient I think.
@MochiClips
@MochiClips 11 месяцев назад
The function is continuous so if x_n converges then Lim f(x_n) = f(lim x_n) :) (Where f is any continuous function e.g. ln)
Далее
What is the derivative of a^x?
8:53
Просмотров 3,8 тыс.
Proof: Derivative of ln(x) = 1/x by First Principles
8:14
ALL of calculus 3 in 8 minutes.
8:10
Просмотров 1,1 млн
The Limit (do not use L'Hospital rule)
12:08
Просмотров 682 тыс.
Why is calculus so ... EASY ?
38:32
Просмотров 1,6 млн