Тёмный

Python Integration, Interpolation, and Curve Fitting 

ignite.byu.edu
Подписаться 1,7 тыс.
Просмотров 59 тыс.
50% 1

Опубликовано:

 

29 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 25   
@mokus603
@mokus603 3 года назад
After all these year, you video is still amazingly helpful! Thank you for your hard work
@jawnvawn
@jawnvawn 6 лет назад
Really enjoyed your clear tutorial. I'm using this to help me fit spectra peaks from astronomical data to gaussian curves. Will hopefully impress my professor. Much thanks!
@AlexOmbla
@AlexOmbla 4 года назад
Thank you very much! I couldn't find this anywhere , you saved me
@jimwest63
@jimwest63 6 лет назад
A very good video, just what I needed to quickly get going on a work problem I currently have, using nothing but the packages that already come installed in anaconda. Good work.
@ignitebyuedu
@ignitebyuedu 5 лет назад
Thanks for the positive feedback. The code is available at this website: ignite.byu.edu/che263/lectureNotes/ This includes all lecture notes. If you back up to che263 you can see other course materials. The integration, interpolation, and curve fitting slides are now separate, but much of the content is the same. Not all notes are posted; they get added as the semester progresses. You can find slides from previous semesters here: ignite.byu.edu/che263/lectureNotes/old.html
@yurivendruscolo7676
@yurivendruscolo7676 9 лет назад
Hello, would it be possible to get a pdf of the data shown on the video?
@clivemayo4049
@clivemayo4049 8 лет назад
Great video, very well explained thanks
@skfkfkd
@skfkfkd 8 лет назад
This was a superb tutorial, I was wondering if you have or can make a video explaining how to make the r squared value for the curve fitted function you made at 14:08
@davidmckinnon4770
@davidmckinnon4770 5 лет назад
As a Python newbie, I found this tutorial fantastic for an analysis I am currently undertaking. What is missing though, is the code necessary for goodness of fit. I can't figure out how to do this - can anybody help?
@philtoa334
@philtoa334 2 года назад
Nice Thx.
@Satenc0
@Satenc0 7 лет назад
Very nice explained
@MartinezF
@MartinezF 7 лет назад
I have a question about the last fitting you did. Those command lines make the fit with minimum squares? (sorry for my english)
@frankelindddd
@frankelindddd 6 лет назад
What if the function have been integrated by .quad and sub into another non-analytical function to get two sets of array, and I want to do curve fitting of that with test data?
@stefanofedele4820
@stefanofedele4820 7 лет назад
I like it, but I was looking for some tutorials that explain me how can I use the covariance matrix, that in your tutorial is reported at the end of it as "extras" in the "curve_fit" output, and still I can't find anyone who explain me it
@blanky_nap
@blanky_nap 7 лет назад
Great stuff! thx!
@juliarey6475
@juliarey6475 5 лет назад
GRACIAS!!!!
@Satenc0
@Satenc0 7 лет назад
How about using numpy corrcoef? at curve fitting id just enter p3 as parameter of it
@shobanasanthanagopalan
@shobanasanthanagopalan 5 лет назад
Thank you. Is there a downloadable of this notebook?
@aamir122a
@aamir122a 7 лет назад
At the end of the function, why do you put dx, has it any use?
@RobinOnYew
@RobinOnYew 6 лет назад
just saying dx is the convention that you put in an end of a integral because you are declaring you are using the decimal system for x that is the meaning of it in integrals but in a bit more complicated integrals you can declare part of a fucntion thay ou want to solve as the system like Ux it's pretty interesting and easy so you should check it out
@Passco666
@Passco666 5 лет назад
Where I can found that example notebook?
@riccardolizio8230
@riccardolizio8230 5 лет назад
i think it is the jupiter notebook, you can get it through anaconda navigator
@Passco666
@Passco666 5 лет назад
@@riccardolizio8230 Thank you for reply.. I have already downloaded jupyter,however I did not find any example or training sheet :(
@sambad8429
@sambad8429 6 лет назад
import numpy as np import matplotlib.pyplot as plt % matplotlib inline from scipy.integrate import quad def f(x): return 3.0*x*x+ 1.0 xlo=0 xhi=1 I, err=quad(f,xlo, xhi) print("I =", I) print("err =", err) from scipy.interpolate import interp1d x_given= np.linspace(0,10,10) y_given=np.cos(x_given**2.0/8.0) xx= np.linspace(0,10,1000) yy=np.cos(xx**2.0/8.0) plt.plot(x_given, y_given, "o", label="given data") plt.plot(xx, yy, ":", label="perf") plt.legend(loc='best') x_i=np.linspace(0,10,1000) f_linear=interp1d(x_given, y_given) y_li=f_linear(x_i) f_spline=interp1d(x_given, y_given, kind='cubic') y_is=f_spline(x_i) #plot plt.plot(x_given, y_given, "o", label='given data') plt.plot(x_i,y_li, '-', label='linear') plt.plot(x_i,y_is, '--', label='spline') plt.plot(xx, yy, ":", label='perf') plt.legend(loc='best') x_given=np.array([0.,1.,2.,3.,4.,5.]) y_given=np.array([0.,0.8,0.9,1.0,-0.8,-1.0]) x_p=np.linspace(-2.0,6.0,100) p_3=np.polyfit(x_given, y_given,3) y_p=np.polyval(p_3,x_p) plt.plot(x_given, y_given, "o") plt.plot(x_p, y_p, '-') plt.legend(['data','polyfit'], loc='best') plt.ylim(-2,2) from scipy.optimize import * def f(x,a,b,c): return a*np.exp(-b*x)+c x_given=np.linspace(0,4,50) y_given=f(x_given,2.5,1.3,0.5)+0.2*np.random.normal(size=len(x_given)) params,extras=curve_fit(f,x_given, y_given) print('a=%g, b=%g, c=%g' %(params[0], params[1], params[2])) y_fit=f(x_given,params[0], params[1], params[2]) #plots plt.plot(x_given, y_given, "o") plt.plot(x_given, y_fit, "-") plt.legend(['data', 'fit'], loc='best')
Далее
Symbolic math in Python
20:37
Просмотров 10 тыс.
Curve Fitting in Python (2022)
24:50
Просмотров 97 тыс.
MAGIC TIME ​⁠@Whoispelagheya
00:28
Просмотров 17 млн
Monte Carlo Integration In Python For Noobs
15:32
Просмотров 153 тыс.
Python 🐍 Nonlinear Regression Curve Fit
14:22
Просмотров 81 тыс.
Exact Areas and Definite Integral with Python
6:34
Просмотров 22 тыс.
Lesson 14, Part 2: SciPy - 1-D and 2-D interpolation
12:25
Non-Linear CURVE FITTING using PYTHON
11:37
Просмотров 78 тыс.
Integration in PYTHON (Symbolic AND Numeric)
15:20
Просмотров 84 тыс.
Fast Inverse Square Root - A Quake III Algorithm
20:08
SciPy Beginner's Guide for Optimization
11:03
Просмотров 297 тыс.
CITS2401 - 11.3. Interpolation in Python
24:18
Просмотров 8 тыс.
Fitting a Power Law
10:31
Просмотров 9 тыс.