Тёмный

Rolling Objects by Walter Lewin 

Paulo Flores
Подписаться 885
Просмотров 2,1 тыс.
50% 1

Опубликовано:

 

5 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 15   
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
for a rolling object, with mass m, descending a ramp with inclination teta, the linear acceleration is given by the following expression: a = (m*g*sin(teta)) / (m+(I/r^2)) where I denotes the rotational inertia or mass moment of inertia at the center of mass, and r is the radius below are the mass moment of inertia for several rolling objects: 1. Solid Sphere: 2/5 *m*r^2 2. Hollow Sphere: 2/3 *m*r^2 3. Solid Cylinder: 1/2 *m*r^2 4. Hollow Cylinder: m*r^2 thus, corresponding accelerations are: 1. Solid Sphere: a = 5/7*g*sin(teta) 2. Hollow Sphere: a = 3/5*g*sin(teta) 3. Solid Cylinder: a = 2/3*g*sin(teta) 4. Hollow Cylinder: a = 1/2*g*sin(teta) hence, in a race between these 4 rolling objects down in an inclined plane the results are: 1st place: Solid Sphere 2nd place: Solid Cylinder 3rd place: Hollow Sphere 4th place: Hollow Cylinder See demonstrative video of this race in the following link (instant of time 55min 05sec): ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-eXfwodnO6lc.html
@JunFetao
@JunFetao 2 месяца назад
Nice and complete description. Thanks 🙂
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
@@JunFetao Many thanks.
@JinZin-v8o
@JinZin-v8o 2 месяца назад
Great lesson from Dr. Lewin. Great mentor and physician. Big Thanks.
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
I thank you so much.
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
for a rolling object, with mass m, descending a ramp with inclination teta, the linear acceleration is given by the following expression: a = (m*g*sin(teta)) / (m+(I/r^2)) where I denotes the rotational inertia or mass moment of inertia at the center of mass, and r is the radius below are the mass moment of inertia for several rolling objects: 1. Solid Sphere: 2/5 *m*r^2 2. Hollow Sphere: 2/3 *m*r^2 3. Solid Cylinder: 1/2 *m*r^2 4. Hollow Cylinder: m*r^2 thus, corresponding accelerations are: 1. Solid Sphere: a = 5/7*g*sin(teta) 2. Hollow Sphere: a = 3/5*g*sin(teta) 3. Solid Cylinder: a = 2/3*g*sin(teta) 4. Hollow Cylinder: a = 1/2*g*sin(teta) hence, in a race between these 4 rolling objects down in an inclined plane the results are: 1st place: Solid Sphere 2nd place: Solid Cylinder 3rd place: Hollow Sphere 4th place: Hollow Cylinder See demonstrative video of this race in the following link (instant of time 55min 05sec): ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-eXfwodnO6lc.html
@exlife9446
@exlife9446 2 месяца назад
this is a very important experiment, and it tells the diameter does not affect the acceleration of the cylinder rolling down on the slope.
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
Many thanks.
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
The acceleration can be expressed as follows: a = (2/3) g sin (teta)
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
for a rolling object, with mass m, descending a ramp with inclination teta, the linear acceleration is given by the following expression: a = (m*g*sin(teta)) / (m+(I/r^2)) where I denotes the rotational inertia or mass moment of inertia at the center of mass, and r is the radius below are the mass moment of inertia for several rolling objects: 1. Solid Sphere: 2/5 *m*r^2 2. Hollow Sphere: 2/3 *m*r^2 3. Solid Cylinder: 1/2 *m*r^2 4. Hollow Cylinder: m*r^2 thus, corresponding accelerations are: 1. Solid Sphere: a = 5/7*g*sin(teta) 2. Hollow Sphere: a = 3/5*g*sin(teta) 3. Solid Cylinder: a = 2/3*g*sin(teta) 4. Hollow Cylinder: a = 1/2*g*sin(teta) hence, in a race between these 4 rolling objects down in an inclined plane the results are: 1st place: Solid Sphere 2nd place: Solid Cylinder 3rd place: Hollow Sphere 4th place: Hollow Cylinder See demonstrative video of this race in the following link (instant of time 55min 05sec): ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-eXfwodnO6lc.html
@exlife9446
@exlife9446 2 месяца назад
@@ProfessorPauloFlores I appreciate for your detailed and informative complements, Dear professor.
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
@@exlife9446 You are welcome.
@petrisorcatana5735
@petrisorcatana5735 3 месяца назад
a= (2/3)g •sin( alfa) ,cilinder
@ProfessorPauloFlores
@ProfessorPauloFlores 3 месяца назад
Many thanks. In the link below it is a video with an example of application for spheres, cylinder, and ring: ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-FDvcIuNEgo0.html
@ProfessorPauloFlores
@ProfessorPauloFlores 2 месяца назад
for a rolling object, with mass m, descending a ramp with inclination teta, the linear acceleration is given by the following expression: a = (m*g*sin(teta)) / (m+(I/r^2)) where I denotes the rotational inertia or mass moment of inertia at the center of mass, and r is the radius below are the mass moment of inertia for several rolling objects: 1. Solid Sphere: 2/5 *m*r^2 2. Hollow Sphere: 2/3 *m*r^2 3. Solid Cylinder: 1/2 *m*r^2 4. Hollow Cylinder: m*r^2 thus, corresponding accelerations are: 1. Solid Sphere: a = 5/7*g*sin(teta) 2. Hollow Sphere: a = 3/5*g*sin(teta) 3. Solid Cylinder: a = 2/3*g*sin(teta) 4. Hollow Cylinder: a = 1/2*g*sin(teta) hence, in a race between these 4 rolling objects down in an inclined plane the results are: 1st place: Solid Sphere 2nd place: Solid Cylinder 3rd place: Hollow Sphere 4th place: Hollow Cylinder See demonstrative video of this race in the following link (instant of time 55min 05sec): ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-eXfwodnO6lc.html
Далее
Mcdonalds cups and ball trick 🤯🥤 #shorts
00:25
Просмотров 484 тыс.
TRENDNI BOMBASI💣🔥 LADA
00:28
Просмотров 913 тыс.
Types of frictional forces with examples
3:08
Просмотров 146 тыс.
Are solid objects really “solid”?
21:29
Просмотров 6 млн
Understanding Aerodynamic Lift
14:19
Просмотров 1,4 млн
The Most Mind-Blowing Aspect of Circular Motion
18:35
Просмотров 708 тыс.
Mcdonalds cups and ball trick 🤯🥤 #shorts
00:25
Просмотров 484 тыс.