Тёмный

Unlocking The Secrets Of Complex Analysis: Dive Into Taylor's & Laurent's Series 

SB TechMath
Подписаться 45 тыс.
Просмотров 3,5 тыс.
50% 1

Опубликовано:

 

31 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 24   
@sameershaikh-k9z
@sameershaikh-k9z 6 месяцев назад
Sir aapki class chahe paid course ho ya RU-vid ki class hr class me kuch nya hi milta hai seekhne ko ❤ thank you so much sir 🙏 for thus amazing class Mere Bahut se doubts the Taylor aur Laurent series ko lekr sb short out ho gye Aur hmko Cauchy integral formula exact nhi pta tha use kaise krte hain Laurent me Mera Sara doubt clear ho gya sir Thank you so much Sir ❤
@nehadiwakar6927
@nehadiwakar6927 7 месяцев назад
Very nice explanation 👌👌thanks a lot sir ...
@rituraj9301
@rituraj9301 7 месяцев назад
Nice explanation
@SaloniJain-p1u
@SaloniJain-p1u 5 дней назад
Sir aapne bola tha sinz/z^2 ke example mai ki hum usme direct cauchy integral formula mhi lga sakte hai kyunki function analytic hai annular region mai to fir humne jo a_0,a_1 nikala tha usme fir kyu lagaya cauchy integral formula? Plz sir bta dijiye bhut confusion ho rha hai isme
@SBTechMath
@SBTechMath 5 дней назад
Time??
@SaloniJain-p1u
@SaloniJain-p1u 5 дней назад
@@SBTechMath sir aapne yaha per btaya tha 33:53, 40:00 , and 46:35 yaha value nikali hai
@SBTechMath
@SBTechMath 5 дней назад
@@SaloniJain-p1uyou didn’t notice one thing ☹️ when you are finding a0 and a1 then function is f(z)=sinz / z^2 and when you are solving using CIF then the analytic function in the contour is not f(z). Watch it again with slow speed and find your mistakes.
@SaloniJain-p1u
@SaloniJain-p1u 5 дней назад
@@SBTechMath sorry sir , and thankyou so much sir 😊 I found my sily mistake!🥲
@kulsoomarashid4266
@kulsoomarashid4266 3 месяца назад
Sir at 1:20, Q4, what is the correct option? Since limit z tending to ♾️ exists finitely, it means f(z)/z^n=a, a constant which implies that f(z)=az^n, similarly g(z) = b z^n. So which means option 3 is correct. Kindly correct me if i am wrong. Thank u
@SBTechMath
@SBTechMath 3 месяца назад
Limit is 1 then a=b=1
@SBTechMath
@SBTechMath 3 месяца назад
The 2nd thing, polynomial can have less degree term also
@kulsoomarashid4266
@kulsoomarashid4266 3 месяца назад
Ok got it thank u​@@SBTechMath
@kulsoomarashid4266
@kulsoomarashid4266 3 месяца назад
​​@@SBTechMathhow is that possible here in this case ? Like if we take h(z)= f(z)/z^n, then limit z tending to infinity h(z) =1, and hence exists finitely, which means h(z) has removable singularity at ♾️, which further implies that h(z) is a constant because only constant functions have removable singularity at infinity. So taking h(z) = constant, we get f(z)= az^n=z^n. How can we here get, less degree terms ?
@SBTechMath
@SBTechMath 3 месяца назад
@@kulsoomarashid4266 see the explanation. In text you can discuss all the things. Think about Taylor series.
@14-nasirhusain83
@14-nasirhusain83 5 месяцев назад
Sir in last question...f(z) has two poles 1 and 2 If we expand by laurants expansion....why there comes infinite terms of 1/z Pole me to only finite terms hote hai of 1/z???
@SBTechMath
@SBTechMath 5 месяцев назад
When it occurs think about this
@14-nasirhusain83
@14-nasirhusain83 5 месяцев назад
@@SBTechMath infinite terms of 1/z are when there is essential singularity... But here I don't know why bze f=1/(z-1)(z-2)...it has poles
@RanSingh-x3k
@RanSingh-x3k 6 месяцев назад
Sir voice bahut km aati hai please improve sir 🙏
@SBTechMath
@SBTechMath 6 месяцев назад
Voice is Upto the mark in this video.
@TanishaGarg-l9c
@TanishaGarg-l9c 3 месяца назад
sir question 4 me option 1 kyo nahi ho sakta . hama par bhi to hame negative terms finite mil rahi hai
@dreamgirl61196
@dreamgirl61196 6 месяцев назад
Nice class sir. Sir i have a doubt, does analytic continuation is possible for the function 1/z-1 beyond the boundary |z|=1?? does there exist series expansion for this function if boundary contains singularity?
@SBTechMath
@SBTechMath 6 месяцев назад
no
@dreamgirl61196
@dreamgirl61196 6 месяцев назад
@@SBTechMath Thank you sir. If possible, please discuss this topic analytic continuation in more detail🙏🏻
@Learnmathematics-k5o
@Learnmathematics-k5o 5 месяцев назад
Sir please residue pr bhi lecture daliye
Далее
#Limit of Sum, Conceptual Video
18:08
Просмотров 144