Тёмный

You see nonlinear equations, they see linear algebra! (Harvard-MIT math tournament) 

blackpenredpen
Подписаться 1,3 млн
Просмотров 145 тыс.
50% 1

Get started with a 30-day free trial on Brilliant: 👉brilliant.org/blackpenredpen/ ( 20% off with this link!)
This system of nonlinear equations is from the general round of the 2023 Harvard-MIT math tournament. www.hmmt.org/www/archive/271 I will present the linear algebra method I learned from their official solution to solve this system because I thought it was fascinating. It's from Harvard and MIT, of course, it is awesome!
3 ways of finding the determinant of a 3x3 matrix: • How to find the determ...
Try "my first Harvard-MIT math tournament problem": • My First Harvard MIT M...
----------------------------------------
🛍 Shop my math t-shirt & hoodies: amzn.to/3qBeuw6
💪 Get my math notes by becoming a patron: / blackpenredpen

Опубликовано:

 

29 мар 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 253   
@blackpenredpen
@blackpenredpen 3 месяца назад
Get started with a 30-day free trial on Brilliant: 👉brilliant.org/blackpenredpen/ ( 20% off with this link!)
@ibrahimhalilkanat299
@ibrahimhalilkanat299 2 месяца назад
you are talking so much
@nzbil8790
@nzbil8790 3 месяца назад
i have another way xy + z + xz + y = 40 + 51 x(y+z) + y + z = 91 (x+1)(y+z) = 91, we know that y+z = 19 - x, so : (x+1)(19-x) = 91 19x - x^2 + 19 - x = 91 x^2 - 18x + 72 = 0 (x-12)(x-6) = 0 x = 12 or 6 then just plug x into the equation and we will get the same value of y and z like in the video, CMIIW :3
@NarutoSSj6
@NarutoSSj6 3 месяца назад
Yea. He said he would leave the substitute method for us to use. This was about using linear algebra to solve the problem
@nzbil8790
@nzbil8790 3 месяца назад
@@NarutoSSj6 okay
@dummyaccount1706
@dummyaccount1706 3 месяца назад
​@@NarutoSSj6no way, did he really?
@user-us5cw3eq8y
@user-us5cw3eq8y 3 месяца назад
Я решил так же😄. I've decided the same way
@Nothingx303
@Nothingx303 3 месяца назад
Same bro 😊
@DistortedV12
@DistortedV12 3 месяца назад
As they say, “linear algebra is limited to linearity property, but oftentimes, it is easy to fit your nonlinear problem in a linear form”
@mattywlion5174
@mattywlion5174 2 месяца назад
Who says that? The voices in the head?😂
@harshitgautam4436
@harshitgautam4436 2 месяца назад
Add 1st and second equation (y+z)(x+1)=91 x+1+y+z=20 Take x+1 as a and y+z as b Then ab=91 and a+b=20 So (a,b)=(13,7),(7,13) x is either 6 or 12
@vuqarahadli
@vuqarahadli 18 дней назад
yep i did it in my mind in 1 minute
@Steve_Stowers
@Steve_Stowers 3 месяца назад
I started Gauss-Jordan elimination on the matrix at 5:18, got to [1 1 19-x] [0 x-1 x+32] [0 1-x x²-19x+40] and concluded that -(x+32) = x²-19+40 (to make row 2 + row 3 = 0), which gives x=6 and x=12.
@landsgevaer
@landsgevaer 3 месяца назад
Adding first two gives (x+1)(y+z) = 91 Final gives (x+1)+(y+z) = 20 Solving for x+1 and y+z gives the pair (7, 13), in either order. Backsubstituting in the first eqns, et voila.
@joseluishablutzelaceijas928
@joseluishablutzelaceijas928 3 месяца назад
Yeah... also I did it in a very similar way but I then interpreted "x+1" and "y+z" as the zeroes of the equation z^2-20*z+91 = 0 and obtained so the two solutions suggested in the video, this problem can thus be solved quite quickly, maybe he simply wanted to intentionally apply concepts from linear algebra here, although that would not be necessary.
@Bayerwaldler
@Bayerwaldler 3 месяца назад
Only under the assumption that x+1 is an integer
@landsgevaer
@landsgevaer 3 месяца назад
@@Bayerwaldler Nope, why? Solving for x+1 and y+z allows them to be any real numbers (or complex or much more). That is a quadratic. It just turns out to be an an integer solution.
@landsgevaer
@landsgevaer 3 месяца назад
@@joseluishablutzelaceijas928 Yes, I agree. I give a LinAlg course this quarter and thought of borrowing it as a different type of exercise when I saw the title, but I think it is a bit contrived given that easier approaches come to mind.
@Bayerwaldler
@Bayerwaldler 3 месяца назад
@@landsgevaer Aah - I see. You get a quadratic equation like -u^2 + 20u = 91 where u = x+1. Then the rest follows nicely. Very good!
@eqyuio654
@eqyuio654 3 месяца назад
I have another way x + y + z = 19 xz + y = 51 xy + z = 40 y = 51 - xz z = 40 - xy x + 51 - xz + 40 - xy = 19 x - xz - xy = -72 -x (y + z - 1) = -72 x (y + z - 1) = 72 x + y + z = 19 then y + z - 1 = 18 - x x (18 - x) = 72 18x - x² - 72 = 0 x² - 18 x + 72 = 0 (x - 6) (x - 12) = 0 x1 = 6 x2 = 12 Next: y + z = 13 y + 6z = 51 6y + z = 40 6y + z = 40 3y + 3z = 39 3y + 18z = 153 (Substracting) -20z = -152 z1 = 7,6 y1 = 5,4 y + z = 7 y + 12z = 51 12y + z = 40 12y + z = 40 6y + 6z = 42 6y + 72 z = 306 (Substracting) -77z = -308 z2 = 4 y2 = 3 Solutions: x1 = 6 y1 = 5,4 z1 = 7,6 x2 = 12 y2 = 3 z2 = 4
@lostwizard
@lostwizard 3 месяца назад
I combined the first two equations, did some algebra to get (x+1)(y+z)=91, used the third to replace (y+z) with (19-x), and arrived at that same quadratic. After which I promptly made a sequence of arithmetic errors solving the quadratic and then subsequently even more arithmetic errors solving the resulting system of equations. It turns out that if you fail at basic arithmetic, math is hard. :)
@SroTheProducer
@SroTheProducer 2 месяца назад
I love how the math you do is simple and understandable, but used creatively.
@carlosangulo2888
@carlosangulo2888 3 месяца назад
Love the way u solve it. Thx. ❤
@zyc4nthropy728
@zyc4nthropy728 2 месяца назад
2:43 I love how these 3 equations actually do still have a valid real number solution
@felipefred1279
@felipefred1279 2 месяца назад
I was doing this method of eigenvalues to solve systems of differential equations at my differential equations class today. Good lecture professor!
@kontiki7030
@kontiki7030 2 месяца назад
2:32 was is a coincidence because 5y+2z=10,y+z=3 and 2y-z=1 has a solution which is (y,z)=(4/3,5/3)
@Anonymous-tq2iu
@Anonymous-tq2iu 3 месяца назад
6:16 determinant of a determinant ?
@zeron85
@zeron85 3 месяца назад
Proud to have been able to solve this problem
@BalajiKomanabelli-nd1xq
@BalajiKomanabelli-nd1xq 2 месяца назад
Loved this approach, thinking out of the box
@ethanthiebaut2596
@ethanthiebaut2596 3 месяца назад
More of these please 🙏🙏
@sanjogar
@sanjogar 2 месяца назад
Adding the first two equations, you get (y + z)(1 + x) = 91. From the second equation: y + z = 19 - x. Substitute and get (19 - x)(1 + x) = 91. Solving for x with Bhaskara's Formula, you obtain x = 12 or x = 6, and so on.
@iabervon
@iabervon 3 месяца назад
Your digression about the 0 determinant not always giving solutions also applies in reverse. If you look at where the first two equations are linearly dependant, that must give 0 for the determinant, which gives you a root of the cubic (x=1) without needing to notice anything about the coefficients.
@victorpaesplinio2865
@victorpaesplinio2865 2 месяца назад
In the example at 2:30, the 3rd equation is actually the 1st minus 3 times the 2nd, meaning it is also redundant
@joshuanugentfitnessjourney3342
@joshuanugentfitnessjourney3342 3 месяца назад
Linear algebra is one thevmost useful math tools i never used unless forced to in my undergrad
@darcash1738
@darcash1738 2 месяца назад
What applications do you use it for now
@joshuanugentfitnessjourney3342
@joshuanugentfitnessjourney3342 2 месяца назад
@@darcash1738 nothing, couldn't get a job with my math degree. Really useful in physics and especially computer science
@matheusjahnke8643
@matheusjahnke8643 2 месяца назад
Time for cheap tricks; Computing L1+L2-L3- x L3 on the left hand side... we have (xy+z)+(xz+y)-(x+y+z)-x(x+y+z) carefully cancelling...we are left with -x-x² The right hand side is 40+51-19-19x=72-19x -x-x²=72-19x Then I got lazy... but we arrive at the same polynomial of x(up to a non-zero scalar multiple) so it should arrive at the same solution
@Chris_387
@Chris_387 3 месяца назад
Add the first 2 equations, factor and take 2 cases, you are done
@danieldepaula6930
@danieldepaula6930 3 месяца назад
If I understood correctly, that's the same way I did it. If you add the first two equations, you get x(y+z) + (y+z) = 91. After that, using the 3rd equation, you get y+z = 19 - x. So, you can easily find both values ​​of x. Then, using the first two equations again (this time, as a linear system of order 2), you find y and z for both cases.
@Bayerwaldler
@Bayerwaldler 3 месяца назад
Only under the assumption that x+1 is an integer
@ZackBlackwood97
@ZackBlackwood97 3 месяца назад
​@danieldepaula6930 genuinely asking as I'm not 100% sure, when you add the first two equations together don't you need to do X×Z?
@danieldepaula6930
@danieldepaula6930 3 месяца назад
​​@@ZackBlackwood97 I didn't understand exactly what you mean, but this is it (step by step): xy + z + xz + y = 40 + 51 xy + xz + y + z = 91 x*(y+z) + (y+z) = 91 And as you have that y+z = 19-x by the third equation, you can find x.
@djconnel
@djconnel 3 месяца назад
@@danieldepaula6930but that has complex roots
@TalkLoudSayNothing
@TalkLoudSayNothing 3 месяца назад
You don't need to solve the cubic, you can just say that it's easy to see that the first two rows of the 3x3 system of equations are linearly independent, therefore the third row must be expressible as a linear combination of the first two. Then looking at the left hand side, the respective coefficients must be 1/(1+x) and 1/(1+x), which yields 91/(1+x) = 19-x, x=6 or x=12.
@ChessBros-ic5tz
@ChessBros-ic5tz 2 месяца назад
What happens if you equate phytagoras Therom to the quadratic formula or is that not possible
@cdkw8254
@cdkw8254 3 месяца назад
I haven't heard about any of those things but it sounds cool.
@mauriziomorales5303
@mauriziomorales5303 2 месяца назад
Beautyfull. Thank you very much because you helped me to solver this exercise of Lineal Algebra.
@marusukech.5049
@marusukech.5049 2 месяца назад
Another way is let w = y + z and it can form an quadratic equation
@Qermaq
@Qermaq 3 месяца назад
2:42 y = 4/3, z = 5/3. The third equation works just fine....
@khattab5351
@khattab5351 14 дней назад
it is actually solvable using gaussian elimination 0 x 1 | 40 0 1 x | 51 1 1 1 | 19 replace r1 and r3 r3-xr2 r1-r2 r2-xr3 r1-(1-x)r3 doing these steps gives and identity matrix and gives us x, y and z with respect to x x=(51x-40)/x+1 -32 then we get a quadratic equation that gives x=6 or 12 y=51- 51x^2-40x/x^2-1 z=(40-51x)/(1-x^2) we can then substitute 6 and 12 into these and get y and z s1 (6, 5.4, 7.6) s2(12, 3 ,4)
@jimschneider799
@jimschneider799 3 месяца назад
How much would you bet that whoever came up with this problem started with the functions x*y+z, x*z+y, and x+y+z, picked some values for x, y, and z, and plugged them in to get the values x*y + z = 40, x*z + y = 51, and x+y+z = 19, only to be surprised later when it had multiple solutions?
@janami-dharmam
@janami-dharmam 2 месяца назад
quadratic equations are expected to have two solutions; because the numbers are real, both roots must be either real or complex conjugate
@ahmetalicetin5331
@ahmetalicetin5331 2 месяца назад
Can you make a video on how to use Weierstrass factorization theorem?
@dimokratisnt3637
@dimokratisnt3637 2 месяца назад
Any closed contour integral videos?
@kiopa5233
@kiopa5233 2 месяца назад
Hey I am an high schooler, I didn’t know most of the determinant formulas you used , but your video was fascinating. Thank you.
@anarchosnowflakist786
@anarchosnowflakist786 2 месяца назад
hi, thanks for the video, it's interesting as always, do you have a video where you detail more the method you're using at 10:00 for finding the factors of the cubic equation ? also I tend to have the issue in maths that I try to brute-force a lot of calculations without thinking to use methods that would be easier, like in this case using substitutions and big annoying calculations instead of just thinking to use the determinant like you did, so do you have any method beyond just habit, training and exercises to have some idea of what methods to use whenever you see a new math problem ? is there anywhere you might check online if you're not sure what to do ? I'd love to see how your thought process goes from the moment you discover the problem
@Criscros107
@Criscros107 Месяц назад
For the factors part, as he said in the video, he inspect the equation and saw that if you replace 1 in X then you will get 0=0 meaning that the cubic equation is divisible in (x-1) then you do so using ruffini method, sorry for the bad english, but I hope you understood
@lucho2868
@lucho2868 19 дней назад
Suming the first two equations gives (x+1)(y+z) = 91 and the third equation gives x+1+y+z=20 thus x+1 = 10 +/- sqrt(100-91) = {13,7}. In the first case (x=12) we get (Cramer) y=(40x-51)/143=429/143=3 and z=(51-3)/12=4. In the second case (x=6) we get (Cramer) y=(6×40-51)/35=189/35=27/5 so z=40-27*6/5=38/5. So, after checking they work, the set of solutions is {(12,3,4),(6,27/5,38/5)}. EZ but tedious.
@TheBlueboyRuhan
@TheBlueboyRuhan 3 месяца назад
THANK YOU for this idea, can't believe is was that simple to fix x as a constant and take determinants - since x is non-zero! Ignore all of the comments talking about the trivial way to solve this with gauss-elim, they don't understand the power this method has
@MichaelZankel
@MichaelZankel 3 месяца назад
Yess I asked for more last video and got more 😂
@Maman-Setrum
@Maman-Setrum 2 месяца назад
wow, i like how you using matrix as part of solving
@CalmArgha1243
@CalmArgha1243 2 месяца назад
The way I had solved this I got values which when added and multiplied givens answers close to 40,51,19. The set of answers was (x,y,z)=(7.3,4.6,6.2) and this is the only set I got.
@scottleung9587
@scottleung9587 2 месяца назад
Got 'em both!
@jmsaucedo
@jmsaucedo 2 месяца назад
Just watch Gilbert strang course too
@TheJaguar1983
@TheJaguar1983 3 месяца назад
When I was in school these were called "Simultaneous Equations". Not sure when the term "Systems of Equations" became the preferred term. I only heard for the first time about a year ago.
@oloyt6844
@oloyt6844 3 месяца назад
Extremely interchangeable but system usually refers to 3+ variables in my experience
@pneujai
@pneujai 3 месяца назад
‘simultaneous equations’ is commonly used in school mathematics ‘system of equations’ is commonly used in the field of linear algebra, from high school to university
@lawrencejelsma8118
@lawrencejelsma8118 3 месяца назад
It was great seeing an extraneous solution that didn't solve the systems of those nonlinear equations by trying to turn a 3x2 matrix multiplied by a 2x1 matrix to form a 3x1 matrix of solutions. We saw extraneous x=1 that didn't work with x=6 and x=12 that both do work as solutions in what was taught. Sometimes looking at a problem creating polynomial solutions both extraneous and good solutions get intermixed to allow us to see potentials that fail but can inter result. 👍
@twelfthdoc
@twelfthdoc 2 месяца назад
Before looking at BPRP's solution: I was able to factor the information in the equations into a quadratic in terms of x, yielding two results. One case yielded a solution in the Rationals while the other yielded a solution in the Naturals, so depending on the set the variables are meant to be from, there are either one or two solutions. After watching BPRP's solution: the quadratic I obtained was the same, but the factor of (x - 1) in the cubic was a redundant solution because of the matrix multiplication. I eliminated that solution because I had used a linear transformation while I was manipulating the original equations to extract the quadratic in x. Always worth checking solutions with the original equations as well as any obtained through linear algebra manipulation to ensure they are true solutions rather than redundant (i.e contradictory) solutions.
@wafiklotfallah9951
@wafiklotfallah9951 2 месяца назад
Subtracting Eq 3 from Eq 1 and adding 1: xy-x-y+1=(x-1)(y-1)=22 Subtracting Eq 2 from Eq 1 and adding 1: xz-x-z+1=(x-1)(z-1)=33 Substituting X=x-1,etc., we get: XYZ=22Z=33Y Or Z=3Y/2 X+Y+Z=16. So 2X+5Y=32 Subtracting Eq 1 from Eq 2: zX-yX=(Z-Y)X=11. So XY=22 Now we get: (2X-5Y)^2 = (2X+5Y)^2 - 40XY = 1024 - 880 = 144 So 2X-5Y=+/- 12 4X = 44,20. We then get X, Y, Z, and finally get the two solutions: x=12,y=3,z=4 or x=6,y=27/5,z=38/5
@matheodaniloalvitreslopez3159
@matheodaniloalvitreslopez3159 3 месяца назад
This question is to be answered until 11:59 am, for those who have the last digit of their DNI 5: What is the letter you like the most among A, B, C, I, N , The m?
@janda1258
@janda1258 3 месяца назад
Set up the equation x(Eq3) + (Eq3), and simplify using (Eq1) and (Eq2), you get x^2 -18x +72 = 0, then solve for x. Next, multiply (Eq1) by x, simplify using (Eq2), solve for y to get y=(40x-51)/(x^2-1) and solve for y. Lastly use (Eq3) to solve for z
@christianbarnay2499
@christianbarnay2499 2 месяца назад
7:43 You can immediately see there's a X-1 factor in the determinant and factor it right away before expanding the 19-X. X²(19-X)+51+40-(19-X)-51X-40X = (X²-1)(19-X)+51(1-X)+40(1-X) = (X-1)(X+1)(19-X)-91(X-1) = (X-1)((X+1)(19-X)-91) = (X-1)(-X²+18X-72)
@kacodemonio
@kacodemonio 2 месяца назад
This is a beautiful problem.
@devondevon4366
@devondevon4366 2 месяца назад
3, 4, and 12 This is a simpleproblem for an Harvard MIT math tournament xy+ z =40 equation 1 xz + y =51 equation 2 x+ y+z = 19 equation 3 Let's add the first two equations : xy + z =40 and xz + y =51, Hence xy + xz + y + z =91 x(y+z) + 1(y+z) =91 factor out y +z Equation 5 y + z = 19- x (solving for y+ z , using equation 3) x(19-x) + 1 (19-x) = 91 (substituting 19-x into equation 5) (x+1)(19-x) =91 (x+1)(-x+19)=91 - x^2 + 19- x + 19x =91 0 = x^2 -18x +72 0= (x -6)(x-12) x =6 and x =12 Let try x=12 first using equation 1 and equation 2 12y + z=40 y + 12z=51 y = 3, and z=4 Hence x=12 , y=3 and z= 4 The next step is to solve when x =6 and using equation 1 and equation 2 again 6y + z =40 equation 9 y + 6z= 51 equation 10 36y + 6z = 240 mulltiply equation 9 by 6 y + 6z = 51 35y = 189 y= 189/35 y=5.4 z=266/35 z=7.6 x =6, y=5.4 , and z=7.6 answer as well This also satisfy the equation when x= 6, Hence x=12 Hence the answer is x=12, y=3 and z=4
@abhinavyadav8408
@abhinavyadav8408 Месяц назад
we can solve by adding the equations xy+z=40 eq1 xz+y=51 eq2 x+y+z=19 eq3 on adding eq. 1,2,3 x+xy+xz+2y+2z=110 adding 2 on both the sides x(y+z+1) 2(y+z+1)=112 (x+2) (y+z+1)=112 -------equation 4 from equation 3 y+z=19-x substituting y+z=19-x in eq. 4. (x+2) (-x+20)=112 -x^2+18x-72=0 (x-6)(-x+12)=0--------equation 5 from equation 5 x=6, x=12 substituting x=6 in equations 1,2,3 we get 6y+z=40--eq6 6z+y=51---eq7 6+y+z=19 --eq8 from equation 8 y+z=13 from equation 6 z=40-6y substituting z=40-6y in eq. 8 -5y=-27 y=5.4 substituting y=5.4 in equation 8 z=7.6
@nuclearrambo3167
@nuclearrambo3167 21 день назад
i was thinking of row reduction while treating x as const
@rcnayak_58
@rcnayak_58 2 месяца назад
We can also solve it without using determinant. For example, let us arrange these equations as xz + y = 51 ...(1), xy + z = 40 ...(2) and x + y + z = 19 ...(3). Adding (1) and (2) and factorizing, we get (x + 1)(z + y ) = 91 ... (4). Again subtracting (2) from (1), we get , on factorizing, (z - y)(x - 1) = 11 ...(5). From (3), (z + y) = 19 - x ...(6). Putting (z + x ) value in (4) , we get (x + 1)(19 - x) = 91 ... (7) solving this , we get ( x - 6)(x -12) =0, so that we have x = 6 or x = 12. Case - I, when x = 6, in (3), we we get z + y = 13 ... (7) and again putting x =6 in (5), we get (z - y) = 11/5 ... (8). From (7) and (8) we get z = (1/2)(13+11/5) = 7.6 and y = (1/2)(13 - 11/5) = 5.4. Therefore, the first solution set {x, y, z) = {6, 5.4, 7.6}. Case - II when x =12: putting this in (3) z + y = 7 ...(9). Again putting x = 12 in (5) we get z -y = 1 ...(10). From (9) and (10), we get z = (1/2)( 7 + 1) = 4 and y = (1/2)( 7 - 1) = 3. Therefore, the 2nd solution set {x, y, z) = {12, 3, 4}.
@hpsmash77
@hpsmash77 Месяц назад
11:55 that transition
@nirorit
@nirorit 2 месяца назад
I multiplied the 3rd by x, and then substituted xy and xz with the first 2 equations and then substituted y+z with the 3rd equation to get a quadratic equation with only x.
@donwald3436
@donwald3436 22 дня назад
What is this sorcery dividing by x-1 can you explain that technique????
@ahmedshaikha8938
@ahmedshaikha8938 Месяц назад
Ever heard of the Moore Penrose inverse
@sebastiaogabrielsoaresdeol3675
@sebastiaogabrielsoaresdeol3675 2 месяца назад
Is there a better way to check if the solutions are valid? Or is the only alternative to testing?
@danielmilyutin9914
@danielmilyutin9914 2 месяца назад
What questiined me is why did value 1 appeared? After a thought, beacuse it makes matrix singular not with row 3 being linear combination of rows 1 and 2, but columns 1,2 became collinear.
@72kyle
@72kyle 2 месяца назад
First eq take last eq: xy - x - y = 21 (IV) Rearrange third z = 19-x-y Sub this into second x(19-x-y) + y = 51 (V) Expand this and add to (IV) 19x - x^2 -xy +y +xy -x -y = 21+51 Simplify to x^2 -18x +72 =0 (x-6)(x-12)=0 x=6, or x=12 Then sub into (IV) to get y and then into third eq to get z. (6,5.4,7.6) and (12,3,4)
@ulysslombu-dji-mabicke1868
@ulysslombu-dji-mabicke1868 28 дней назад
Nice. I didn't know that trick.
@davidturner9827
@davidturner9827 2 месяца назад
(40 + 51) / (x + 1) = 19 - x
@armanavagyan1876
@armanavagyan1876 3 месяца назад
Pretty interesting PROF 👍
@__NK_37
@__NK_37 3 месяца назад
just add equation first and second and factorise
@yoav613
@yoav613 3 месяца назад
Nice and very easy
@chunpanhuen2681
@chunpanhuen2681 2 месяца назад
It is a really good question
@user-et5dw8de4i
@user-et5dw8de4i 2 месяца назад
det(x 1, 1 x)=x^2-1 detψ(40 1,51 x ) =40x-51 detz(χ 40,1 51)=51χ-40 ψ=detψ /det z=detz/det we substitute into third equation x^3-19x^2 +90x-72=0 x1 x=6 ψ=5.4 z=7.6 x=12 ψ=3 z=4 x>=1 x
@hai.nguyen995
@hai.nguyen995 3 месяца назад
I guess I over-complicated this: xz + y - (x - y - z) = 32 => xz - x - z +1 = 33 => (x-1)(z-1) = 33 (1) xz + y - xy - z = 11 => (x-1)(z-y) = 11 (2) 1/2 => z - 1 = 3(z - y) => z = (3y - 1)/2 => x = (39 - 5y)/2 xy + z = 40 => 5y^2 - 42y + 81 = 0; y = 3 or y = 27/5 (x,y,z) = (6, 27/5, 38/5) or (12, 3, 4)
@Protract_Loop
@Protract_Loop 2 месяца назад
Just subtract eq.3 from eq.2 = eq.4 Subtract eq.4 from eq.1=eq.5 Substitute the value of x from eq.3 in eq.5 Factorise eq.5 and you get value of x Substitute value of x and y in eq.1 to get y and z
@cillixnlynch_
@cillixnlynch_ 2 месяца назад
Could also use multivariable Newton method
@alexmucci5327
@alexmucci5327 2 месяца назад
So, we're basically treating the X as a parameter and using the standard method for linear system? Well, pretty genious move; good job americans
@cringotopia8850
@cringotopia8850 2 месяца назад
Truely useful method that gave me new insights about using the traditional Gaussian Elimination However, If I were to be in that tournament, i would use the traditional Substitution method, because it seems specifically easier and faster in this question
@nyaanyaa7
@nyaanyaa7 2 месяца назад
xy+(19-x-y)=40 x(19-x-y)+y=51 adding both eq to get 18x-x^2+19=91 so x^2-18x+72=0 then x=6, x=12 solve for y and z and get 2 solutions 12,3,4 and 6,27/5,38/5
@paultoutounji3582
@paultoutounji3582 3 месяца назад
You could have just added equations 1 and 2 and factorise as (x+1)(y+z) = 91. Then substitute from equation 3 y+z = 19-x…..
@matheodaniloalvitreslopez3159
@matheodaniloalvitreslopez3159 3 месяца назад
Esta pregunta es para que me respondan hasta las 11:59 am, para los que tienen el último dígito de su DNI 5 : ¿Cuál es la letra que les gusta más entre la A, la B, la C, la I, la N, la M?
@rogo7330
@rogo7330 3 месяца назад
Basically, we assume that this system is solvable, and from that assumption we solving simpler system, avoiding undefined behaviour, like setting variable to zero.
@notfancy2000
@notfancy2000 2 месяца назад
I haven't seen Ruffini in ages!
@kdenis8852
@kdenis8852 2 месяца назад
Did it in my head, 12,4,3
@mohammedis-haque8447
@mohammedis-haque8447 Месяц назад
12,3,4
@eagle32349
@eagle32349 2 месяца назад
Could you explain why cos(sin(1/e)) ≈ 1? (In degrees)
@yurenchu
@yurenchu 2 месяца назад
It's because when x ≈ 0 , sin(x) ≈ x and cos(x) ≈ 1
@Nine-2545
@Nine-2545 Месяц назад
I have a question, Let A B C, and k are Real numbers. If 2k^2k = ((A+B+C)^(A+B+C))/2, find k in terms of A, B, and C.
@rogofos
@rogofos 3 месяца назад
I have a type of equation I'm curious about x!=a how can we easily solve this for any given value of a I couldn't find anyone even mention factorialic equations like this I'm sure there is a solution since we can just guess it by insertion or solve it graphically but that's lame so is there a better way?
@manavverma55
@manavverma55 13 дней назад
Dude I have similar question for you to solve x+y+z=4, xy+yz+zx= -7, xyz= -10 find x, y & z. tell me in another way or easy way for this question i try substitution but it was became very long and lengthy.
@fernandolino6493
@fernandolino6493 2 месяца назад
12,4,3
@tharunsankar4926
@tharunsankar4926 Месяц назад
I assumed that x had to control the rank of the system. I determined that the rank had to be 2, so I did Converted the equation to augmented matrix system (4 x 3) and determined the x value to ensure that one of the rows go to 0’s for rank 2. I got I think 2 values for x (I have to check I did this a long time ago) that trip this equation to a rank 2. Then solved for y a and x using cramers rule. Anyways moral of the story: I don’t think you have to get the characteristic polynomial to trip this into a diminished rank anyways.
@Why-cl8pf
@Why-cl8pf 2 месяца назад
Solved this in the real test! :)
@DistortedV12
@DistortedV12 3 месяца назад
The part you kinda zipped through was that cube root part? You said assume 1 is a sol. and then proceeded with that approach I’m not familiar with
@reyhananiz5099
@reyhananiz5099 3 месяца назад
The coefficients add up to 0, so x=1 is a solution.
@lakshya4876
@lakshya4876 3 месяца назад
He used the remainder theorem. Remainder theorem says that if a polynomial (say p(x)) is divided by another linear polynomial(say (x-a)), then the remainder is given by p(a). If p(x) is divided by (x-1), then remainder is given by p(1). But, p(1) means x=1, so if the coefficients all add up to zero, then (x-1) should be a factor of p(x)
@TalkLoudSayNothing
@TalkLoudSayNothing 3 месяца назад
Guessing solutions and using the remainder theorem is a common method of solving higher-order equations :)
@joellouis1005
@joellouis1005 2 месяца назад
I just think of an easy way which high school can solve this. Since x +y +z = 19, z = 19 -x -y ; xy +z = 40, so xy + 19 -x -y = 40, then xy -x -y =21 … (1) xz + y = 51, so x (19 -x -y) +y = 51, then 19x -x^2 -xy +y = 51 …(2) Put (2) into (1), -x^2 +19x -xy +x +y -x =51, so -x^2 +18x -21 =51, x^2 -18x +72 = 0. We can get x = 6 or 12
@ramunasstulga8264
@ramunasstulga8264 3 месяца назад
Mit never disappoints 🗿
@HenryBriskin
@HenryBriskin 2 месяца назад
This man is a genius
@ianmathwiz7
@ianmathwiz7 9 дней назад
If we take our solutions to be in projective space, the x=1 case provides one more solution at infinity: (1, 0, 0, 0).
@hamzaansari1772
@hamzaansari1772 3 месяца назад
Surprisingly Seeing the third eqn first time i randomly put values (x,y,z) as (12,3,4) and ❤ question is over But answer is not the thing that mathematics wants😊 Now trying with the original method
@prateek1.9
@prateek1.9 Месяц назад
add all eqns , we get xy + z + xz + y + x + y + z = 110 xy + xz + x + 2y + 2z = 112 - 2 x(y + z + 1) + 2y + 2z + 2 = 112 x(y + z + 1) + 2(y + z + 1) = 112 (y + z + 1)(x + 2) = 112 (y + z + 1)(x + 2) = 8 * 14 x + 2 = 14, y + z + 1 = 8 x = 12..........(a), y + z = 7.........(b) given xy + z = 40 from eq(a), 12y + z = 40 11y + (y + z) = 40 from eq(b), 11y = 40 - 7 11y = 33 y= 3.........(c) also given, x + y + z = 19 from eq(a) and (c), 12 + 3 + z = 19 z = 4 (x,y,z) = (12,3,4) integer soln
@spenzr6920
@spenzr6920 2 месяца назад
Add first two equations and put y+z = 19-x
@Pikachulova7
@Pikachulova7 2 месяца назад
I wonder if solving geometrically in 3d is any better
@ghaiethalwi2575
@ghaiethalwi2575 2 месяца назад
Me using Newton’s method to approximate the solutions 😢
@mohamedibrahim1023
@mohamedibrahim1023 3 месяца назад
Very nice method, but i have a confusion like why this method work ? You get the value of x such that it make 1 equation redundant and i got that , but this doesn’t explain why such X value will be a value that satisfies the original equation with the other variables?
@TalkLoudSayNothing
@TalkLoudSayNothing 3 месяца назад
It won't be, but the solutions to the original problem will be in the set of the solutions of the cubic equation. So you just check the latter ones one by one. It's like when you square both sides of an equation.
@mohamedibrahim1023
@mohamedibrahim1023 3 месяца назад
Yes here is the problem, that this x value will be in the set of solutions, is there a proof for that , does this mean that this method will work for any 3*3 non linear systems such that this 3*3 systems have a unique solution in the first place ?
@mohamedibrahim1023
@mohamedibrahim1023 2 месяца назад
Its okay i watched the video again and got it
@Skank_and_Gutterboy
@Skank_and_Gutterboy 2 месяца назад
The method above makes absolutely no sense to me. I solved the bottom equation for y: y=19-x-z Then I substituted it into the first two equations which yields the following two equations in terms of x and z: -x^2+19x-xz+z=40 -x+xz-z=32 When you add these two equations together, the z and xz terms cancel out and you're left with the quadratic: x^2-18x+72=0, so x=6 or 12. From there, it is easy to solve for y and z. (x,y,z) = (6, 27/5, 38/5) or (12, 3, 4).
@pauljackson3491
@pauljackson3491 3 месяца назад
No can you do non-linear equations? Like x^2 + x*y*z + y^2*z = 50 and higher powers of x and y and z. Or even weirder ones like "sin(x) + y = 30" and "x + sin(y) = 40"?
Далее
EXTREME quintic equation! (very tiring)
31:27
Просмотров 638 тыс.
if x+y=8, find the max of x^y
12:59
Просмотров 720 тыс.
How to lie using visual proofs
18:49
Просмотров 3,1 млн
believe in the math, not wolframalpha
14:50
Просмотров 1,1 млн
I visited the world's hardest math class
12:50
Просмотров 657 тыс.
My first calculus 3 limit on YouTube
11:08
Просмотров 91 тыс.
The rarest move in chess
17:01
Просмотров 1,2 млн