Тёмный
No video :(

Butterworth Filter : Design of Low Pass and High Pass Filters 

ALL ABOUT ELECTRONICS
Подписаться 633 тыс.
Просмотров 313 тыс.
50% 1

Опубликовано:

 

27 авг 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 151   
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
The link for the derivation of the transfer function for the sallen key filter topology. drive.google.com/open?id=1igXSBw6Rmb_HtWzGtKW9q41lELzbY-V7
@noweare1
@noweare1 6 лет назад
really good explaination. Now I know why I cant get the gain I was trying to get out of my filter. Thanks Boss!
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
If you want some gain, only active filter can do it....
@shazadali920
@shazadali920 5 лет назад
Dude... like thank you so much I was lost until I heard that beautiful voice shower me with knowledge. Thank you so much, this helps me so much in my ee2320 class!
@mattt180
@mattt180 3 года назад
I'm in a 400 level biomechanics class and have to apply a low pass butterworth filter to an EMG signal on a spread sheet for data smoothing. I'm still way lost, this stuff is going over my head.
@varunnagpal2258
@varunnagpal2258 6 лет назад
Remark at at 6:07: For 2nd order If Q = 1/sqrt(2) then filter type is butteworth (no ripples in passband) and if Q > 1/sqrt(2) then filter type is chebyshev (ripples in passband)
@user-zo4py2kw2m
@user-zo4py2kw2m Год назад
Thank you. The process of deriving formulas and drawing conclusions for higher-order filter design is very interesting
@noweare1
@noweare1 6 лет назад
There's a lot of math and I watched the video a couple of times to understand. This can all be simplified to a) using sallen-key topology b) Using Fc = 1/(2x PI x R x C) choose Fc , C and solver for R c) Keeping the gain between 1 and 2.5
@rolfw2336
@rolfw2336 2 года назад
Choosing R1=R2 and C1=C2 is a more simplified way of choosing the components, but it limits your choice of Q. By choosing 4 separate values of those components, you can actually adjust Q. You don't need to adjust gain with the additional 2 resistors. His video has a lot in it, but I don't think he explained that.
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@amitghosh3938
@amitghosh3938 5 лет назад
I think i am half done by seeing this video, all i required now is to watch it again.
@L.Becker
@L.Becker 3 года назад
Hi, I found a mistake in your video, at 2:51 you can not simply calculate the transfer function by multiplying the functions from the two RC lowpass filters, because the first transfer function changes when you connect a load. You can't just use a normal voltage divider there. You have to calculate the transfer function again using Kirchhoff which adds an extra term, however, it does't change much of the final result. When setting R1 = R2 = R and C1 = C2 = C the new transfer function simply has a 3 instead of a 2 as a factor at 5:29 .
@sadmansakib4803
@sadmansakib4803 3 года назад
Yes bro, the transfer function in this video was wrong
@AnkitYadav-zg5zd
@AnkitYadav-zg5zd 2 года назад
for cascading first circuit to the second, there should a coupling circuit having infinite input resistance and zero output resistance. because of the loading things got different. you are right!
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@muratownuk4422
@muratownuk4422 3 года назад
thank you for posting these videos! Good knowledge refresher!
@ashwinmurali1911
@ashwinmurali1911 3 года назад
2:46 bro the second low pass portion will draw some current from the first one, you cannot simply multiply the transfer function of individual filters In such case. Proper nodal analysis will give you the correct transfer function.
@sadmansakib4803
@sadmansakib4803 3 года назад
Yes bro. In this video the transfer function of second order low pass filter which was determined is fully wrong
@pedrohenriquevalentimsanto2421
@pedrohenriquevalentimsanto2421 4 года назад
This video Helped me a lot. Thanks mate! Keep up with the great work.
@kaursingh637
@kaursingh637 4 года назад
SIR -PRAY SUGGEST BOOK WITH MANY SOLVED EXAMPLES -THANK U SIR FOR EXCELENT LECTURE
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 4 года назад
Do you want me to suggest the book for a particular topic or in general for the electronics.
@kaursingh637
@kaursingh637 4 года назад
@@ALLABOUTELECTRONICS SIR SOLVED PROBLEMS OP AMP SOLVED EXAMPLES AMPLIFIERS +SOLVED EXAMPLES SEMI CONDUCTORS- THANK U SIR
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 4 года назад
Well if you take any textbook, you won't get much solved examples. There will be practice problems at the end of the chapter. But you can purchase the book for gate,ies or any other competitive exam which covers many solved examples. There you will get many solved examples. Also you can check the second chanel ALL ABOUT ELECTRONICS- QUIZ, which is dedicatedly created for the solved examples on various topics.
@kaursingh637
@kaursingh637 4 года назад
@@ALLABOUTELECTRONICS thank u very much sir -amarjit -advocate delhi high court
@NowshinAlam
@NowshinAlam 4 года назад
Can you explain why exactly the terms in the denominator of transfer function are what they are? Like how exactly do we know that 1/R1R2C1C2 in the equation was wc^2, the term with s was equal Wc/Q and so on? Are these found from observation? Do we make the assumptions first and then find out from the equation that the gain from transfer function for w = wc becomes equal Q?
@thirstymente2699
@thirstymente2699 4 года назад
Sir can u please explain how the frequency shifts by cascading? i.e. Wnc=Wc*√(2^(1/n)-1)
@video-ll3dy
@video-ll3dy 4 года назад
wao it deserves a love react .
@mr.amp0076
@mr.amp0076 6 лет назад
I am gonna put this on my breadboard.... Wanna see how well it works
@mnada72
@mnada72 4 года назад
4:20 Do you mean cut off frequency gets shifted because of loading effect ? And from where the w_nc is derived ?
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@l.jenipharjeni3777
@l.jenipharjeni3777 6 лет назад
please explain the digital electronics and microprrocessor & microcontroller and DSP
@LousyPainter
@LousyPainter 5 лет назад
Awesome cool video! Big Thumbs up.
@sindhujalingampally6066
@sindhujalingampally6066 3 года назад
Thankyou somuch 👍🏻
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Nice video, nicely explained....
@chitrareddychitra6292
@chitrareddychitra6292 3 года назад
Thank you for excellent explaination sir..... A small suggestion form my side ... It is good if subtitles r placed little bit low we couldn't see equations clearly
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 3 года назад
You can turn it on or off the subtitles manually in the settings. Moreover on the desktop, you can drag it anywhere on the screen.
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the w(omega) value? Is it 1?
@krross9397
@krross9397 2 года назад
If i wanted to add a gain to the 1st order part (the 2nd stage) of the 3rd-order filter, then i would use Q=1 to find R6 and R7 (like R3 and R4 of the 1st stage), is it correct? Since the 3rd order polynomial is (s2+s+1)(s+1) --> we see from the first part, s2+s+1 that Q=1 for the 1st stage, and we see from the second part, s+1 that Q=1 for the 2nd stage. Please let me know if i'm mistaken.
@kindjupiter
@kindjupiter 6 лет назад
thank you very much. it helped me alot
@siddhantkumarsinha6183
@siddhantkumarsinha6183 5 лет назад
For 4th order what value of quality factor should i choose to solve. Like looking at the chart there are two values 0.7654 and 1.8478. Plzz help
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 5 лет назад
4th order filter will be the cascade connection of two 2nd order filters. Hence, there will be two polynomials for each stage. One second order filter will have Q= 0.7654 while the second stage will have Q= 1.8478. So, or the first stage, you can decide the values of R and C by considering Q= 0.7654 and similarly for the second stage you can decide the value by considering Q= 1.8478. I hope it will clear your doubt.
@siddhantkumarsinha6183
@siddhantkumarsinha6183 5 лет назад
Yes, thank you very much. My doubt is fully cleared.
@alaa5861
@alaa5861 2 года назад
@@ALLABOUTELECTRONICS so the coefficient of s from the table is Q? isn't it 1/Q?
@saiprakashputrevu7512
@saiprakashputrevu7512 5 лет назад
Nice explanation sir...
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
Can someone please tell me what the omega constant is. Or sum
@isaacosahon4352
@isaacosahon4352 6 лет назад
great explanation
@muhammadnawaz4659
@muhammadnawaz4659 4 года назад
At 7:30 the second term in the denominator should be S[R1C1+R2C2+R1C1(1-k)/R1R2C1C2] There is a minor typo in case anyone was confused
@amlansahoo6493
@amlansahoo6493 4 года назад
That part is correct. I guess the correction will be at 8:05 It'll be R1C2 in the denominator
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@MasterMindmars
@MasterMindmars 3 года назад
Very good Is it not possible to cascade 4 operationals with gain 1 and without the R3 and R4 to adjust the gain, connecting the output directly to the negative input ?
@EJP286CRSKW
@EJP286CRSKW 2 года назад
Your statement that the Butterworth filter cannot be implemented passively is incorrect. Look up the Cauer topology.
@mouten1889
@mouten1889 Год назад
thank you sir
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@chonghuiyi831
@chonghuiyi831 4 года назад
Hi, if I am required to calculate the number of order for Butterworth high pass filter, is it normal for me to get a negative value? How do I actually calculate it?
@user-ft4xr8gv7o
@user-ft4xr8gv7o 4 года назад
if I use the S domain to calculate 3dB frequency of first order low pass filter I will have different result form using 1/(2piRC), can you explain me why???Like the example on the first low pass filter video. Using S domain method I have 659Hz and using 1/(2piRC) i got 1,59kHz.
@vatsala900
@vatsala900 3 года назад
Good explanation !
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@azazahmed4533
@azazahmed4533 4 года назад
Thank you sir, too usefull vedio
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Yes bro, really nice video....
@nottsoserious
@nottsoserious 6 месяцев назад
I don't think you can cascade two passive filters like you showed. It will cause loading of the first filter. You will need a buffer between the filters.
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 месяцев назад
That is what, I have said at 4:22. The cut-off frequency won't remain same. But it will get shifted.
@soumensarkar7459
@soumensarkar7459 2 года назад
How can I construct 2nd order high Butterworth filter of cut off frequently 20 khz?
@ronakagarwal6781
@ronakagarwal6781 6 лет назад
Just by cascading two low pass filter we get the same cutt off frequency as first order . And for butterworth also ,cuttoff frequency should be same for all orders of filters. Then what is the point to design butterworth filter? If we design then why we can't design using two low pass filters? As u said in video the cutt-off frequency for low pass filter is differ from order to order...How? Overall very difficult to analyze the need of butterworth filter.
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
I think you haven't watched the video of Butterworth filter properly. When you cascade the two RC filters of same cut-off frequency, then the resultant cut-off frequency won't be the same. Also for Butterworth filter Q= 0.707. Which you will not get just by cascading the two RC filter stages.
@dhirajkumarsahu999
@dhirajkumarsahu999 5 лет назад
Sir, please clear my doubt...you said that Butterworth filter has a higher value of Q over passive filters, then what is the advantage of having a Higher Q value?
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 5 лет назад
For Butterworth filter, Q is 0.707. While for the normal passive filter it is at the most 0.5. Like I said, in the normal passive filter, if you simply cascade the two stages, then the cut-off frequency of the cascaded filter will less than the first-order filter. But due to the higher Q in Butterworth filter (due to positive feedback), even for the higher-order filters, the cut-off frequency remains the same. That's the main advantage.
@dhirajkumarsahu999
@dhirajkumarsahu999 5 лет назад
@@ALLABOUTELECTRONICS sir does having higher Q help us in achieving brick wall response?
@EJP286CRSKW
@EJP286CRSKW 2 года назад
The higher Q is accomplished by the transfer function. Positive feedback in the Sallen-Key topology is one way to achieve that, but it isn't the only way.
@muhammadnawaz4659
@muhammadnawaz4659 4 года назад
Since the polynomial for the 4th order butterworth filter is (s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1), how would you determine the Q value for the system? Would there be two separate Q values or could you somehow simplify for a single Q value?
@theelectricalengineeringst7231
@theelectricalengineeringst7231 3 года назад
The Q-factor is only defined for second order filters.
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@shardsofcontent4829
@shardsofcontent4829 4 года назад
What was the middle thing ...?
@Jatin.Mudgil07
@Jatin.Mudgil07 4 года назад
Sir can I have video on vaccum photodiode.photo multipliers.microchannels...if there any plz share the link...
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Vaccum photodiode.... ?
@BanAlMandalawi
@BanAlMandalawi 5 лет назад
thanks a lot
@umarkaleem1275
@umarkaleem1275 6 лет назад
very nice video thanks a lot.. but one thing i couldn't understand i.e. in (s^2+s+1) Wc=1. so how fc=1khz...it should be (1/2*3.14*wc) and if we take fc=1khz then (wc=2*3.14*fc). so the Q will not be = 1.. plz clarify it as soon as possible..
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
Yes, that is correct. Instead of fc, it should have been wc= 1000 rad/sec, because the polynomial equations have angular frequency. Thanks for pointing it out. 👍 So, if we take wc= 1000 rad/sec, then design values will get changed now. C1=C2=C5= 0.1 uF and R1=R2=R3=R4=R5= 10 Kilo Ohm.
@arjunpoudel8762
@arjunpoudel8762 3 года назад
Have you posted full playlist on filter design ?
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 3 года назад
There is seperate playlist on analog filters. ru-vid.com/group/PLwjK_iyK4LLCQkfK92vdh3gAXoaOXXQDu
@aravinda513
@aravinda513 4 года назад
Is this digital signal processing? Because I never had electronic components in the subject
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 4 года назад
This is analog Butterworth Filter. In DSP, what you have studied is Digital filter.
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
This type of filters are used for DSP.....
@mrlajel
@mrlajel 5 лет назад
2:57 not that easy to formulate the cascaded RC network, unless you put buffer in the first stage. That because, the impedance of the first stage will change if you connect the second stage.
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Exactly bro...
@davidzink9479
@davidzink9479 2 года назад
13:22 why Q must be equals to 1? isnt the value multiplying s = wc/Q so wc/Q should be equal to 1?
@Yash-ML-Sharma
@Yash-ML-Sharma 2 года назад
wc is 1 for that equation so Q will also be 1.
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@abhinaygupta5721
@abhinaygupta5721 4 года назад
I want to design filter with 05.hz to 15khz cuttoff.. pls let me know your suggestions
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Design a low pass filter of 15K and high pass filter of 0.5 Hz.....
@KarnTiltedTripod
@KarnTiltedTripod 4 года назад
You told that 3-k will be valid for k less than 3 what will be the value of Q for k>3 as 1/(k-3) =Q
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 4 года назад
As K approaches 3, Q tends to infinity and the system becomes unstable. K has to be less than 3 for a stable system and finite Q.
@xea-1226
@xea-1226 6 лет назад
Thanks.
@manjulaa7994
@manjulaa7994 4 года назад
We need design for linkwitz riley filter
@melvininfant9295
@melvininfant9295 5 лет назад
How did you arrived the polynomial for various orders of filter?
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 5 лет назад
You can find it from the datasheet/application note of the filter. I used it from the one of the application note of the Analog Devices.
@melvininfant9295
@melvininfant9295 5 лет назад
@@ALLABOUTELECTRONICS so it cannot be derived uh...
@EJP286CRSKW
@EJP286CRSKW 2 года назад
Of course it can be derived. See the Wikipedia article, for example.
@johnmoor8839
@johnmoor8839 5 лет назад
good stuff but too much on transfer functions and not enough on the actual filters and their operation in a practical application. would be great if you did a video on how to build practical circuits and when to use the various types for the best results. like your vids but a little less mathematics would not be a bad thing.
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Exactly bro....
@ZOBAER496
@ZOBAER496 4 года назад
How can I design butterworth band pass filter?
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Design butterworth LP and butterworth HP filter and cascade it....
@yahiaaymen7876
@yahiaaymen7876 3 года назад
why we assumed it's 0.14µF
@prabhakardas4261
@prabhakardas4261 6 лет назад
where are the remainig videos of filters?
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
Next video will be on filter design. Chebyshev and Bessel Filter Design.
@Theblues1596
@Theblues1596 6 лет назад
what if cut off freq. 50Khz ?? how many value of R1, R2, R5, R3, R4 ??
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
Suppose the cut-off frequency (Wc= 50000 rad /sec) then the value of R1, R2, and R5 will change. C1, C2, and C5, as well as R4 and R3, will remain same.
@Theblues1596
@Theblues1596 6 лет назад
ALL ABOUT ELECTRONICS thanksss soo much
@jimmybakir6283
@jimmybakir6283 6 лет назад
But If Wc chagnes, to mantain the polinominal function the same, Q has to change, and that makes some ripple appear in the pass band, I just simulated that... How can I choose a value for Wc and keep Q=0.707 (the value to have no ripples or peaks at Fc)
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
I would recommend you to use this tool from analog devices for the filter design. It will be very helpful to you.
@sahilsidmaniac
@sahilsidmaniac 5 лет назад
Can we get more mathematical examples regarding this?
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 5 лет назад
I will post a Quiz related to it in the community Post soon. Do check that section for more quiz.
@sahilsidmaniac
@sahilsidmaniac 5 лет назад
Okk sir thank you...
@omerrahmed
@omerrahmed 6 лет назад
expression for transfer function of sallen key is not correct. It should be K/(s2(R1R2C1C2)+s(R1C1+R2C1+R1C2(1-K))+1) Check: www.ti.com.cn/cn/lit/an/sloa024b/sloa024b.pdf
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
The equation in the video is correct. The position of C1 and C2 is different in the video and in the pdf. That's why I think you got confused.
@sreesanjanaabose.s5777
@sreesanjanaabose.s5777 6 лет назад
Can u please provide the note for the derivation
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
Yes, I will update it very soon in the description.
@mayurshah9131
@mayurshah9131 6 лет назад
Very nice
@rj-nj3uk
@rj-nj3uk 6 лет назад
Do you have a video on schmit trigger circuit. I am unable to find in your channel.
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
No, it is yet to be made. It will be covered in the ongoing lecture series on the op-amp.
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
Hello Rakesh, you can find it in my channel....
@zacharycarbon4312
@zacharycarbon4312 4 года назад
what does "S" represent?
@Pablo-lc5dq
@Pablo-lc5dq 4 года назад
jw
@caydengoh2799
@caydengoh2799 4 года назад
@@Pablo-lc5dq Hi , jw stand for ?
@Pablo-lc5dq
@Pablo-lc5dq 4 года назад
@@caydengoh2799 j multiplied by omega. j is the imaginary unit and omega is 2*pi*frequency.
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
S= jw where j is the imaginary part and w is the angular frequency...
@haadiali8072
@haadiali8072 4 года назад
Very fast paced video .Infact all your videos are fast paced and difficult to understand. It seems like you have memorized the whole lecture and youre just orally communicating .There is no concept and basic explanation whatsoever.
@paulk1328
@paulk1328 4 года назад
I agree with you. Im floating and videos are supposed to make it easier
@ieeextreme16.0nigeria7
@ieeextreme16.0nigeria7 Год назад
Reduce the playback speed. I watched at 0.75x and it was well paced. Enjoy!
@Patrick.693
@Patrick.693 Год назад
U can use his presentation as notes
@d6893
@d6893 Год назад
I second that. One ore two more examples and a more thorough derivation of the formulas would have made understanding a lot easier.
@PetakyahBuckley-ht5iz
@PetakyahBuckley-ht5iz Год назад
What is the value of w(omega)?
@Dre_13345
@Dre_13345 4 года назад
Just try not to rush.... The fact that you have that typical "Indie english accent" makes it not easy to understand it... So speak more slowly (10 times)... For the rest it's good explained.
@TheManikarna
@TheManikarna 4 года назад
Who is here after gate 2021 electrical engineering syllabus ?
@perceptrongaming4290
@perceptrongaming4290 4 года назад
w=1 rad/sec for all cases
@perceptrongaming4290
@perceptrongaming4290 4 года назад
and what will happen if w changes
@abhijitpanigrahy
@abhijitpanigrahy 6 лет назад
I need the derivation
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
Please check the link in the description or the pinned comment for the link of the PDF file.
@OurDen007
@OurDen007 6 лет назад
Please provide note for derivation
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
please wait for a couple of days. I will update it in the description.
@MickeyMishra
@MickeyMishra 3 года назад
I am proof positive that not all Indians are good at math
@scootpoyo9734
@scootpoyo9734 4 года назад
Good explaination. How about 6th Order low pass?
@circuitsanalytica4348
@circuitsanalytica4348 3 года назад
It is similar to second order, cascade of multiple stages....
@clivestephenson2793
@clivestephenson2793 6 лет назад
hello , I am glad to have found your channel , I am looking at building some DIY speakers for myself and want have a 4 way setup, I have little to no electronics background but read the following website education.lenardaudio.com/en/06_x-over.html which explains the problem with the crossover but gives no solution to designing 4 way active systems. I have 2 questions 1 . is an op amp a hi fi quality component or does quality sound in active crossover have to be done with transistors on second order and 3rd order filter 2 have you got circuit diagrams for a complete 4 way active crossover with formulas i would need to calculate the components according to my desired frequecy points? much appreciated, i can send my email if desied regards Clive
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
Well, I had gone through the site you mentioned. It appears that it requires four different filters with different cut-off frequency. Well, I do not have any circuit diagram, but it can be designed using Op-amp. As Op-amp has very high bandwidth. So, for audio applications, it can be used. But only thing with Op-amp is that all Op-amps are not able to drive the speakers. As they have limited output current. So, it depends on your design, what output you require from the speaker. (e.g 1W. 2W etc) well in such case you can use driver IC's at the output of the Op-amp to drive the speaker. Now, about the design, it seems you will requie one low pass filter, two bandpass filters and one high pass filter. You can go for the second order filters, which will give you 12db/octave of roll-off rate.
@sreevanii2570
@sreevanii2570 6 лет назад
sir, please provide note for derivation
@ALLABOUTELECTRONICS
@ALLABOUTELECTRONICS 6 лет назад
I have already provided the note. Please check the description or the pinned comment. You will even find it on the community tab of the channel.
@hllgaming4663
@hllgaming4663 3 года назад
stop the background music please
@umarkaleem1275
@umarkaleem1275 6 лет назад
plz see at 13:27
@walkwithme2466
@walkwithme2466 4 года назад
Can you upload a video M drive filter
@samantsrivastava8170
@samantsrivastava8170 3 года назад
Thank you sir
Далее
What are Resistance Reactance Impedance
12:26
Просмотров 1 млн
Decoupling Capacitors - And why they are important
7:39
How Op Amps Work - The Learning Circuit
8:45
Просмотров 762 тыс.
Filtering 101: Multi Pole Filters with Sallen-Key
6:39
HOW TRANSISTORS RUN CODE?
14:28
Просмотров 377 тыс.
Impedance Explained.
22:35
Просмотров 184 тыс.