Тёмный

Japanese Math Olympiad | A Very Nice Geometry Problem | 3 Different Methods 

Math Booster
Подписаться 58 тыс.
Просмотров 25 тыс.
50% 1

Japanese Math Olympiad | A Very Nice Geometry Problem | 3 Different Methods
MY OTHER CHANNELS
••••••••••••••••••••••••••••••••
Calculus Booster : / @calculusbooster
Math Hunter : / @mathshunter
--------------------------------------------------------------------------------
Join the channel to become a member
/ @mathbooster

Опубликовано:

 

24 апр 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 23   
@prime423
@prime423 2 месяца назад
The most important part of the solution is an analysis of the problem. For example, how do we use the given information. The details most solvers know and be glossed over. These problems are teaching moments!!
@Istaphobic
@Istaphobic 2 месяца назад
I did it the following way: Extend line AD to point E and construct a line from B to meet line AE such that ∠BEA = 90° Let ∠CAD = α ⇒ ∠EBC = ∠CAD = α as ∠BEA = ∠DCA = 90° as BECA is a cyclic quadrilateral (Butterfly Theorem). So ∠EBC = α ∴ △BDE ~ △ACD (angle-angle-angle) Now, as ∠CAB = 45 + α, ⇒ ∠ABC = 45 - α (angles of a triangle add up to 180°), however, as ∠EBC = α, ∴ ∠EBC + ∠ABC = 45 - α + α = 45° ∴ △ABE is a 90°-45°-45° isosceles triangle, and as ∠ABE = ∠BAE = 45° ⇒ BE = AE As line AB = 𝑥, ∴ BE = AE = 𝑥/√2 (Pythagoras' Theorem) Now, letting line AD = y, and as △BDE ~ △ACD, ∴ (𝑥/√2)/5 = 3/y ⇒ y = 15√2/𝑥 Taking △BDE, (𝑥/√2 - 15√2/𝑥)² + (𝑥/√2)² = 5² (Pythagoras' Theorem) ⇒ 𝑥²/2 - 30 + 450/𝑥² + 𝑥²/2 = 25 ⇒ 𝑥² + 450/𝑥² - 55 = 0 ⇒ 𝑥⁴ - 55𝑥² + 450 = 0 ⇒ (𝑥² - 10)(𝑥² - 45) = 0 ⇒ 𝑥² = 10 or 45 ⇒ 𝑥 = ±√10 or ±√45 Now, 𝑥 > 5 as line BC > 5 (hypotenuse > either side of a right-angled triangle) And √10 < 5 ⇒ 𝑥 = √45 ∴ 𝑥 = 3√5
@ROCCOANDROXY
@ROCCOANDROXY 2 месяца назад
Let theta = angle(BDA) implies angle(B) = 135(degrees) - theta and using law of sines on triangle(ABD) implies sin(theta) = x/(5 * sqrt(2)) implies cos(theta) = sqrt(50 - x^2)/(5 * sqrt(2)) and in triangle(ABC) we have 3/x = sin(135(degrees) - theta) = (sqrt(50 - x^2) + x)/10 implies 30 - x^2 = x * sqrt(50 - x^2) implies (x^2 - 45) * (x^2 - 10) = 0 implies x = sqrt(10), 3 * sqrt(5). Let DC = j. For x = sqrt(10) implies j^2 + 10 * j + 24 = 0 implies j < 0 implies drop x = sqrt(10). For x = 3 * sqrt(5) implies (j + 11) * (j - 1) = 0 implies j = 1. Therefore x = 3 * sqrt(5).
@supriyomondal5139
@supriyomondal5139 2 месяца назад
Using the figure of method 2, in 📐 BDE b²+(x-b)²=5²=25 & In 📐 BDE and 📐 ABC respectively sine of angle B=(x-b)/5 =3/x Substitute b w.r.t. x and replace b in the first eqn we get an equation of x of fourth power which has 4 solution out of which √45 is the only solution
@jonpress6773
@jonpress6773 2 месяца назад
Here's another, similar but different: Let Θ =
@yuliatham5419
@yuliatham5419 2 дня назад
a= 1, BC = 5 + 1 = 6, AC = 3, phytagoras X² = 45, X = 3 sqrt 5
@User-jr7vf
@User-jr7vf 2 месяца назад
There's yet a fourth method, which is what I used before watching the solution, which consists of using the Law of Sines in the triangles ABC and ADC to express length AD in terms of x only, then using the Law of Cosines in the triangle ABD to solve for x.
@jimlocke9320
@jimlocke9320 2 месяца назад
In the third method, the notation made be made easier to work with by designating length CD as a, as you did in the first 2 methods. Then, tan(Θ) = a/3 and tan(Θ + 45°) = (a + 5)/3. Apply the tangent sum of angles formula tan(α + ß) = (tan(α) = tan(ß))/(1 - tan(α)tan(ß)) where tan(α) = tan(Θ) = a/3, tan(ß) = tan(45°) = 1 and tan(α + ß) = tan(Θ + 45°) = (a + 5)/3. So, (a + 5)/3 = ((a/3) + 1)/(1 - (a/3)(1)). The positive solution is a = 1. Alternatively, let tan(Θ) = b and then CD = 3b, which also simplifies the notation in your equations.
@michaeldoerr5810
@michaeldoerr5810 2 месяца назад
This is the first time that I thinj that the third method is much much easier. Perhaps I should apply that method to similar geometry problems. What do you think?
@MathBooster
@MathBooster 2 месяца назад
Yes, third method is easy. But sometimes geometry problems are not allowed to solve by using trigonometry, so you need to learn first and second method also.
@MarieAnne.
@MarieAnne. 2 месяца назад
My method started off the same as method 3 in video: Let θ = ∠CAD, and let CD = a tan θ = a/3 and tan(θ+45) = (a+5)/3 Now we calculate a using the tangent formula for difference of angles: tan((θ+45)−θ) = tan 45 (tan(θ+45) − tan θ) / (1 + tan(θ+45) tan θ) = 1 ((a+5)/3 − a/3) / (1 + ((a+5)/3)(a/3)) = 1 (5/3) / ((9 + (a+5)a)/9) = 1 15 / (9 + a² + 5a) = 1 a² + 5a + 9 = 15 a² + 5a − 6 = 0 (a − 1) (a + 6) = 0 Since a is a length, then a > 0 a = 1 Using Pythagorean Theorem in △ABC, we get: x² = 3² + (5+1)² = 9 + 36 x² = 45 *x = 3√5*
@hungtran-zs4tx
@hungtran-zs4tx 2 месяца назад
DAC= x ; AD=3/cosx ; AD=(BD/sin45)XsinABC=5/(cosx-sinx); from that we have an equation: 3/sinx=5/(cosx-sinx) and then equation changed to: 3tanx^2+5tanx-2=0 and root tanx=1/3 ; DC=3tanx=1; X^2=AC^2+BC^2=3^2+6^2=45 and then X=3√5 .
@Irtsak
@Irtsak 2 месяца назад
*If you have n variables, you usually need n equations* The easiest thing is to discover them with the help of the scheme. The most difficult thing is to solve the system, since the equations are independent !!!! Let DE⊥AB and AE=α => BE=x-α Triangle AED is obviously isosceles => AE=ED=α . Very easily AD=a√2 Using areas : (ABD+(ADC) = (ABC) => 1/2⋅ αx+1/2⋅ 3y=1/2⋅ 3(5+y) => *αx=15* (1) Pythagoras in triangle BED => (x-α)²+α²=5² => x²+2α²-2αx=25 => x²+2α²⋅ 2⋅ 15=25 cause (1) x²+2²=55 => x²+y²+9=55 => *x²=46-y²* (2) Pythagoras in triangle ABC => x²=(y+5)²+3² => x²=y²+10y+34 =>46-y²=y²+10y+34 cause (2) => y²+5y-6=0 => y=1 (y>0) So by (2) => x²=45 ⇒ *x=3√5*
@papkenhartunian186
@papkenhartunian186 2 месяца назад
You could have calculated the tangent of angle DAC = DC/3 and also you could have calculated the tangent of angle BAC = (5+DC)/3. Then use tangent of angles (BAD + DAC) = (Tang BAD + Tan DAC)/(1-tangent BAD. Tangent DAC). Eazyly, you could find the tangent of DAC =1/3 which lead you to the DC and next to get X.
@اقرء
@اقرء 2 месяца назад
Thanks for watching
@mariopopesco
@mariopopesco 2 месяца назад
Angle ABC =@ So, angle ADC = 45+@ In triangle ABD, sin ADC = 3/ AD --> sin (45+@) = 3/AD --> AD = 3 / (sin 45 * cos @ + cos 45 * sin@) --> AD = 3 sqrt(2) / (cos @ + sin @) In triangle ABD , sines law : AD / sin @ = BD / sin 45 --> AD = 5 sqrt (2) * sin @ So, 5 sqrt (2)* sin @ = 3 sqrt (2) / (sin@ + cos@) --> (sin @)^2 + sin @* cos @ = 3/5 , and (sin@)^2 + (cos@)^2 = 1 --> (sin @)^2 + sin @* cos @ = 3/5 * [(sin@)^2 + (cos@)^2], we divide by (cos @)^2 --> (tan @)^2 + tan @ = 3/5 [(tan @)^2 + 1] , positive solution tan @ = 1/2 --> In triangle ABC : tan @ = AC / BC --> BC = AC / tan @ = 3 / (1/2) = 6 --> Pithagora in triangle ABC : X^2 = 3^2 + 6^2 = 45 --> X = 3 sqrt5
@yakupbuyankara5903
@yakupbuyankara5903 2 месяца назад
X=3×(5^(1/2))
@prossvay8744
@prossvay8744 2 месяца назад
X=3√5
@comdo777
@comdo777 2 месяца назад
asnwer=15 isit
@User-jr7vf
@User-jr7vf 2 месяца назад
Yes, the "asnwer" can be 15 for all we know. However, the answer is not 15.
@lnmukund6152
@lnmukund6152 2 месяца назад
Mr anerobic Ur process is 2 mch cumbersome, totally un lucid, invalid, sorry Mukund
Далее
A Nice Geometry Problem
8:45
Просмотров 3,7 тыс.
Poland Math Olympiad | A Very Nice Geometry Problem
13:08
Many Students Failed To Solve This Geometry Problem
19:56
China | A Very Nice Algebra Problem | Math Olympiad
10:20
Olympiad Mathematics /Indians
3:35
Просмотров 12 тыс.
The Man Who Solved the World’s Hardest Math Problem
11:14