Тёмный

Why do all shapes lie in the Polyhedron Plane? 

Stand-up Maths
Подписаться 1,2 млн
Просмотров 231 тыс.
50% 1

Опубликовано:

 

22 окт 2024

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 786   
@CivilWarWeekByWeek
@CivilWarWeekByWeek 8 месяцев назад
I have a correction at this point Ben Sparks isn't kindly making geogebra programs he is clearly in your basement forced to code against his will
@SparksMaths
@SparksMaths 8 месяцев назад
Help me...
@CivilWarWeekByWeek
@CivilWarWeekByWeek 8 месяцев назад
@@SparksMaths I would but I do need a Geogebra file to help me in Matrix Algebra so I think I'll just make a deal with Matt to get it
@standupmaths
@standupmaths 8 месяцев назад
How did you get on the wifi?
@hexisplus9104
@hexisplus9104 8 месяцев назад
​@@standupmathsplease do this for higher dimensions. This explains so much. The projection from 3d to 2D explains the 4D to 3D projections I have seen and was beautiful.
@SamuQu
@SamuQu 8 месяцев назад
at 13:37 shouldn't it be ax+by=c so you can get every line that crosses the origin?
@johnchessant3012
@johnchessant3012 8 месяцев назад
16:42 just to spell out what Grant is saying here, if you calculate V - E + F for a polyhedron that has a hole in it (e.g. if you approximated the surface of a torus with plane faces), then you won't get 2. Instead, you'll get 2 - 2g, where g is the number of holes. So this is a way to formalize the notion of "holes" (since you can just count them via vertices, edges, faces) and prove that the number of holes is invariant with respect to continuous deformations.
@MadSpacePig
@MadSpacePig 8 месяцев назад
6:30 Funny that you demonstrated a simulation of the polyhedra being projected onto a plane, when in fact, due to the nature of them being rendered on a computer, and displayed on a flat screen, they were already being projected onto a plane, just by us looking at them.
@T3sl4
@T3sl4 8 месяцев назад
Projectiception!
@n0tthemessiah
@n0tthemessiah 8 месяцев назад
Got'em!
@ballparkjebusite
@ballparkjebusite 8 месяцев назад
How high were you?
@gONSOTE
@gONSOTE 8 месяцев назад
yeah but, ironically, by the nature of those 2 different types of projections, the projection of the screen couldn’t be used for making a planar graph
@iwikal
@iwikal 8 месяцев назад
@@gONSOTE Are you sure? They seem quite similar to me. How are they different?
@prdoyle
@prdoyle 8 месяцев назад
I love that this video includes Grant being extra Grant and Henry being extra Henry.
@internetuser8922
@internetuser8922 8 месяцев назад
The United States education system uses "y = mx + b" for the equation of lines. Also, big fan of the "technically correct if you're a topologist" entries.
@carolinecowley427
@carolinecowley427 8 месяцев назад
that must get confusing when they get to quadratics do they do quadratics in the US?
@iout
@iout 8 месяцев назад
@@carolinecowley427 We do, and it's really not that confusing at all. Variables get reused all over the place, it's not any weirder here than when it happens elsewhere. We just don't think about it.
@SiberCatLP
@SiberCatLP 8 месяцев назад
@@carolinecowley427 The distinction I was taught was that "b" was the y-intercept, while "B" was the coefficient of the term with exponent 1. Since they were different looking, "They're different Bs, so they're different values" was easy to accept.
@sphaera2520
@sphaera2520 8 месяцев назад
@@carolinecowley427it’s no more confusing than when c shows up in a new equation.
@mina86
@mina86 8 месяцев назад
@@sphaera2520, with a, b and c there’s clear pattern. Meanwhile, if you’re using m and b for linea, what’s the clear pattern for going to higher order polynomials?
@japanada11
@japanada11 8 месяцев назад
Why you get lines and not just planes: For any polyhedron with only triangular faces, you have the additional relation 3F=2E (each face touches three edges, and each edge touches two faces). The intersection of V-E+F=2 and 3F=2E gives a line that contains all polyhedra with triangular faces. It just so happened that the only polyhedra Matt used in his visualization were triangle-faced polyhedra and their duals (which satisfy 3V=2E, giving the other line). There are lots of polyhedra that don't lie on either line that just didn't get drawn - but the triangle-faced ones and their duals are definitely quite common! (In particular, every platonic solid or its dual is triangle-faced)
@walterkipferl6729
@walterkipferl6729 8 месяцев назад
And, just to make one final point clear: The reason that the Triangular-faced objects satisfy 3V=2E while their duals satisfy 3F=2E is that the switch between duals swaps the number of vertecies and number of faces. This also explains why the tetrahedron and square pyramid (any pyramid really) is on the line of symmetry between the groups: That line is F=V, since mirroring at that line is how you swap number of faces and number of vertices. A pyramid is always on that line since pyramids are self-dual! So they must have identical face-count and vertex-count! This brings up the question: are there other self-dual polyhedra? I don't know and I really shouldn't get into the Geometry Wikipedia rabbithole at 3 in the morning.
@mathcookie8224
@mathcookie8224 8 месяцев назад
OK, so the two diverging lines are because of triangle shenanigans, but what about the center line? Are all duals, even non-triangular ones, at reflections of each other across that center line? And if there is a universal center line, what IS the center line? I would think it’s V=F, since duals swap faces and vertices; is that correct?
@japanada11
@japanada11 8 месяцев назад
@@mathcookie8224 That's exactly right: the center line is the V=F line, and every dual is given by reflection across that line because dual corresponds to swapping the V and F coordinates.
@japanada11
@japanada11 8 месяцев назад
@@walterkipferl6729 Good clarification! Also worth noting that the number of vertices on each face turns into the number of faces touching each vertex in the dual. So while one line contains all the "every face is a triangle" polyhedra (tetrahedron, octahedron, icosahedron, etc), its reflection contains all the "exactly three faces meet at each vertex" polyhedra (tetrahedron, cube, dodecahedron, etc). And yes, there are many other self-dual polyhedra that can be easily found in the geometry wikipedia rabbithole.
@japanada11
@japanada11 8 месяцев назад
Also, there are polyhedra that satisfy V=F but are NOT self-dual. For example, you can start with a cube and draw two new edges coming out of one of the vertices. The result has 8 faces (4 squares and 4 triangles), 14 edges, and 8 vertices. The dual has 8 faces (5 triangles, two quadrilaterals, and a pentagon), 14 edges, and 8 vertices. These are clearly not the same, so you get two distinct polyhedra occupying the same point (8,14,8) on the V=F line.
@coltonchinn2615
@coltonchinn2615 8 месяцев назад
7:13 TIL that “way way way more faces” is equivalent to “two more faces”
@douglaswolfen7820
@douglaswolfen7820 8 месяцев назад
I noticed that too
@adalson9200
@adalson9200 8 месяцев назад
+2
@jh-ec7si
@jh-ec7si 8 месяцев назад
It is if you're a cube
@jamespalmer9033
@jamespalmer9033 8 месяцев назад
Ask any good programmer and they'll tell you there's no such thing as two - the only numbers are zero, one and infinity. Two is just a special case of infinity. 😁
@dembro27
@dembro27 8 месяцев назад
Indeed, it seems that "way" has a value of 0.666666 (repeating, of course).
@John73John
@John73John 8 месяцев назад
1:40 I mean.. 3 Blue 1 Brown was just sitting right there...
@k0pstl939
@k0pstl939 8 месяцев назад
That was why. Grant Sanderson was in the chat of that livestream. 7:30
@raptor4916
@raptor4916 8 месяцев назад
Its a real Parker Name...
@zyxwvut4740
@zyxwvut4740 8 месяцев назад
7:25 ?
@iout
@iout 8 месяцев назад
I've not seen the livestream, but I'm pretty sure that's why they did it that way. And I can say with a relatively high certainty that the conversation went like this: "Make a tetrahedron with 3 blue and 1 brown face!" "That's a great idea. But wait, we don't have any brown tiles. We'll use gold, it's close enough." *makes the tetrahedron* "Here we have it. 3 Blue, 1 Gold"
@plackt
@plackt 8 месяцев назад
So… it’s a Parker reference.
@HunterJE
@HunterJE 8 месяцев назад
I feel like the easiest shortcut to understanding the "why" of the symmetry of duals is that a dual is very much by definition what you get if you swap the things being counted by two of our three variables for one another (while keeping the thing counted by the third constant...)
@reddcube
@reddcube 8 месяцев назад
The dual line is easy to explain. One shape and its dual are reflections of each other along the line. That is because when making a dual shape, each Vertex becomes a Face, each Face becomes a Vertex, and each Edges just changes orientation. So reflections of the line is just swapping the V and F.
@zahirgizzi7009
@zahirgizzi7009 8 месяцев назад
about 12:58: I studied in Germany (Leipzig to be precise) and we learned is as y = mx+n 😆
@henryrroland
@henryrroland 8 месяцев назад
Thought that it was y=b•x +a
@apfel1appelmann
@apfel1appelmann 8 месяцев назад
In Bavaria we used y = mx + t
@zahirgizzi7009
@zahirgizzi7009 8 месяцев назад
LOL In germany schoolsystem is a mess. It is "länder"-specific, so in saxony you have other standards than in bavaria for example 😂 One other big thing i think are the axes. I heard in some regions at school they label the axes x1, x2 and x3. We always labeled them x, y and z (probably mathematicly x1,x2,x3 makes more sense but maybe it's easier to get confused too idk ‾\°°/‾)
@apfel1appelmann
@apfel1appelmann 8 месяцев назад
@@zahirgizzi7009 in high school we used the x and y axis for 2D and x1, x2, and x3 for 3D. In university we used x, y, and z.
@omgitguy
@omgitguy 8 месяцев назад
Interesting. I learned it as y = ax + b. We then extended to y = ax² + bx + c. After that we started using indexes: y = aₙxⁿ + ...
@nathanielpranger7370
@nathanielpranger7370 8 месяцев назад
From my experience in the Netherlands we use "y = ax + b". Nice and clear that we use the first two available letters for unknown parameters, so I thought everyone did. Then I saw you use "m" and I just felt sorry for 14-year-olds learning Newton for the first time.
@biscuit715
@biscuit715 8 месяцев назад
I learnt both in the UK, (m,c, and a,b). I don't actually remember when but ax+b turned up later, possibly at uni, and I wouldn't go for it naturally. I do prefer it though.
@charlesclaudel3958
@charlesclaudel3958 8 месяцев назад
In france we also use ax+b and for polynomials you just add new letters in alphabetic order e.g ax²+bx+c or ax³+bx²+cx+d. I logical and it old itself up when integrating and derivating.
@januszkobayashi1361
@januszkobayashi1361 8 месяцев назад
In Poland it's the same
@Tvillingklippan
@Tvillingklippan 8 месяцев назад
I think kx+m is standard notation in Sweden
@gekylafas
@gekylafas 8 месяцев назад
y = αx + β in Greece
@GeekRedux
@GeekRedux 8 месяцев назад
Given how prevalent TI-80-something graphing calculators are in the US, I'm surprised we haven't seen a shift from y = mx + b to y = ax + b, since that's how those calculators have always presented it.
@JohnDoe-ti2np
@JohnDoe-ti2np 8 месяцев назад
In his memoir, mathematician Goro Shimura says that he once set an exam question for a student who was trying to transfer from another university, which went something like this: Find the equation of the line in the plane that passes through the points (1,5) and (1,2). He wanted to see if the student would blindly use the formula y = mx + c. The student fell into the trap and then complained about being tricked.
@garr_inc
@garr_inc 8 месяцев назад
m+c results in being both 2 and 5, which is impossible for the equation. But if you think about it a little, or even plot them, you see the obvious solution with m=oo.
@jameshart2622
@jameshart2622 8 месяцев назад
@@garr_inc Or you use the generalized formula for a line ax+by+c=0. Yes, the constants are equivalent up to a non-zero scalar multiplier, but it's symmetric in the variables and can represent any line without infinities. It can also represent lines at infinity, which is nifty. See projective geometry.
@garr_inc
@garr_inc 8 месяцев назад
@@jameshart2622 I was more describing why the mindless mx+c fails than claiming how to solve the "unusual" problem. But thanks for the input!
@Muhahahahaz
@Muhahahahaz 8 месяцев назад
Ah, yes… x = 1 This is exactly why I complained when Matt said that y = mx + c could represent “any” line 😅
@Voshchronos
@Voshchronos 5 месяцев назад
Quite clever!
@sachacendra3187
@sachacendra3187 8 месяцев назад
Here in Switzerland we used a multiplicity of letters for the line: ax+by+c=0 or y=ax+b or y=px+q or y=mx+h or y=px+h were all things i encountered in my education. I believe the goal was to teach us that the letters didn't really matter. Also, since Swiss education is very decentralised and each teacher can more or less choose the material they want to use i wouldn't be surprised if elsewhere in Switzerland they would use completely different letters.
@The_Knife_Pie
@The_Knife_Pie 8 месяцев назад
Sweden uses y =kx + m, though I think that’s just because k-value (Swedish: K-värde) sounds better in Swedish than a lot of alternatives I’ve seen here
@magnuswibeck1279
@magnuswibeck1279 8 месяцев назад
k for koefficient (coefficient in Swedish). But I never got m.
@Anonymous-ow6jz
@Anonymous-ow6jz 8 месяцев назад
@@magnuswibeck1279 in the US, we use m because it stands for mlope :)
@erkinalp
@erkinalp 8 месяцев назад
​@@Anonymous-ow6jz magnitude
@pyramear5414
@pyramear5414 8 месяцев назад
I always thought it was y = mx + c, where m is short for "multiplier" and c is short for "constant".
@mumiemonstret
@mumiemonstret 6 месяцев назад
@@pyramear5414 "Constant" is spelled "konstant" in Swedish so here it really should be "y = kx + k". Guess it would be a bit crippling for our mathematicians...
@georgebayliss3291
@georgebayliss3291 8 месяцев назад
England (UK), GCSE: y = mx+c A-level: Very rarely told to give in the y = mx +c format, most commonly we leave in the format y-y1 = m(x-x1) or ax+by+c
@crowman8905
@crowman8905 8 месяцев назад
Very interesting way of interpreting and visualising Euler's polyhedron Formula
@Tasarran
@Tasarran 8 месяцев назад
I work in 3D and programming, and I still go back and forth between 'vertices' and 'vertexes' all the time...
@mytube001
@mytube001 8 месяцев назад
As long as you don't say "verticee" for the singular, as unfortunately some do...
@WindsorMason
@WindsorMason 8 месяцев назад
​@@mytube001 vertisay
@Tasarran
@Tasarran 8 месяцев назад
@@mytube001 That's silly, everyone knows it is 'vertiss'
@chrishillery
@chrishillery 8 месяцев назад
​@mytube001 A friend of mine in Linear Algebra class persistently used the term "matricee" as the singular of "matrices".
@LeoStaley
@LeoStaley 8 месяцев назад
13:00 America uses y=mx+b, but of course you knew that, which is why you brought it up
@marksman1416
@marksman1416 8 месяцев назад
Also in Canada
@Rhynome
@Rhynome 8 месяцев назад
c for constant b for bintercept
@gcewing
@gcewing 8 месяцев назад
b for where it bonks into the y axis.
@nosarcasm1
@nosarcasm1 8 месяцев назад
In Germany we have Different Letters vor y=mx+b ==>(m,b). So we also use (m,n),(a,b),(p,q),(m,k). In A-levels it's common using m for the pitch. It depends on the teacher and also the schoolbooks they use.
@zoerycroft4300
@zoerycroft4300 8 месяцев назад
im so proud of myself, i knew nothing about this before the video, never even thought about arranging any polyhedra or anything, and when you were saying "well,, what different ways can we arrange them" i said... "i bet the euler characteristic is what makes it a plane"
@jimsilsby3841
@jimsilsby3841 8 месяцев назад
Same. The instant he mentioned vertices, edges and faces, I immediately thought, "It's going to be Euler, isn't it?" Thanks, Numberphile!
@JamesWanders
@JamesWanders 8 месяцев назад
Bad news, Matt. When you said we should go "marvel" at the display, the auto-caption wrote it as "Marvel" so your channel belongs to Disney now.
@Like4Schnitzel
@Like4Schnitzel 8 месяцев назад
In Austria (not Australia) we typically use f(x) = kx+d for linear functions. I assumed this was the same in Germany but as other comments have shown me it isn't! Very interesting
@AbiGail-ok7fc
@AbiGail-ok7fc 8 месяцев назад
I would have been tempted to submit my favourite shape: 7 triangles making up a torus, but that would have been disqualified as it has Euler characteristic 0. (7 vertices, 14 edges, 7 faces), and hence, not on the plane. I remember tinkering with an early version of Mathematica for hours to get an R^3 embedable 7-triangle torus. But as an ex-topologist, I do agree with the "off the scale" submissions. Two sides faces, vertices with just two edges, or multiple edges between pairs of vertices, nothing wrong with that. As for the proof of the Euler characteristic being a constant (for planar graphs), instead of starting with a spanning tree, you can start with just a single vertex (V = 1, E = 0, F = 1), then add edges one by one, in such a way the graph remains connected. Each edge either adds a new vertex (in which case, V := V + 1, E := E + 1), or connects two existing vertices, adding a face (in which case E: = E + 1, F := F + 1). In either case, V - E + F remains constant.
@walderlopes3372
@walderlopes3372 8 месяцев назад
It's been a while but I think I learned as y = ax + b here in Brazil back in the 80's.
@hallohoegaathet7182
@hallohoegaathet7182 8 месяцев назад
Same in the Netherlands.
@waxis9153
@waxis9153 8 месяцев назад
Same in Belgium.
@alesecq2172
@alesecq2172 8 месяцев назад
Same in Czech republic
@taavettiihantola561
@taavettiihantola561 8 месяцев назад
I think I learned y=kx+b in Finland.
@walderlopes3372
@walderlopes3372 8 месяцев назад
@@taavettiihantola561that's the most different one so far. nice.
@collin4555
@collin4555 8 месяцев назад
The emergence of those lines is a great example of mathematical beauty. But I do love those quirky 3D printed shapes, too.
@KerryHallPhD
@KerryHallPhD 8 месяцев назад
I love the pivot at 12:56 from dismissive frustration to a positive query :D Excellent video all around!
@TrimutiusToo
@TrimutiusToo 8 месяцев назад
I studied in Russia, and there they used: y = ax + b or sometimes y = kx + a
@gmr7901
@gmr7901 8 месяцев назад
я всегда встречал только y = kx + b
@omp199
@omp199 8 месяцев назад
Do Russian people use Latin letters for variables, then?
@gmr7901
@gmr7901 8 месяцев назад
@@omp199 yes, of course :D but all the math terminology basically translated into Russian, like "многочлен" instead of "polynomial"
@TrimutiusToo
@TrimutiusToo 8 месяцев назад
@@omp199 yeah latin and greek like everyone else
@Necrozene
@Necrozene 4 месяца назад
I once made a graph of how to transform between polyhedronae using simply moves like: "corner cutting", "edge cutting", "vertex expanding". All very nice when animated.
@greenkiwi7941
@greenkiwi7941 8 месяцев назад
13:00 In Hungary, in 5-6th grade, we learn it like "y=ax+b" but later, in high school (9th grade and up) we use "y=mx+c". We often use 'm' as slope, and 'c' as a constant, for moving the graph up and down.
@moimoi73000
@moimoi73000 8 месяцев назад
13:03 hey! I'm French and I learned with y=ax+b. Also, very interesting video thanks matt
@MrKalerender
@MrKalerender 8 месяцев назад
y = mx + c for Australia, however I use y = zx + c for my physics classes as m is for mass, and we do a lot of topics where you are trying to solve for mass from a gradient of an experiment and students writing m = f(m) is problematic. Z doesn't get used (no 3d vectors at high school) in any equations in our formula book so that's our side step!
@mop9542
@mop9542 8 месяцев назад
Agreed, 2000s high school planar mathematics was y=mx+c. When I got to unii the tutors always used to write z=ax+b. Their reasoning was that m is for mass, c is the speed of light and z is the vertical plane. I still use it z=ax+b now because I've ended up a place where I'm doing calcs with masses and vector-forces and need variables that represent what is actually being input/output.
@Gunstick
@Gunstick 8 месяцев назад
Spanning tree is a term well known by network engineers. There is a "spanning tree protocol" which ensures your network does not have any loops, independent on how you interconnect everything. The network switches just "figure it out" (if you have loops in your network, everything just breaks down (you can have something called "broadcast storm")
@Tranbarsjuice
@Tranbarsjuice 8 месяцев назад
In Sweden, where I studied, the linear equation was introduced as y=kx+m. As far as I know it is still taught that way.
@adamrowedotcom
@adamrowedotcom 8 месяцев назад
16:00 my artwork is above your hand (but in the background) - made my day to see it make a cameo since it was inspired by watching another of your videos!
@henryrroland
@henryrroland 8 месяцев назад
12:56 I was raised in Brazil, here we use y = a·x + b
@hendrikd2113
@hendrikd2113 8 месяцев назад
This doesn't make sense. Once you go up to other polynomias the system breaks down. "b*x + a" seems logical.
@henryrroland
@henryrroland 8 месяцев назад
@@hendrikd2113 It does... y = ax² +bx+c The order of the coefficients follows the alphabet
@Yhnertful
@Yhnertful 8 месяцев назад
about 30 years ago Faroe Islands used "y=ax+b", both in Faroese language books and Danish language books.
@RagingRats
@RagingRats 8 месяцев назад
Even though I always use y=mx+b, using ‘a’ instead of ‘m’ makes a lot more sense
@dysphoricpeach
@dysphoricpeach 8 месяцев назад
good to know that i can always cut a sandwich made of polyhedra plotted by number of faces, edges, and vertices, no matter how many ingredients i add, perfectly in two! also interesting how matt went with the 3 blue 1 brown tetrahedron instead of the parker cube (a 3d solid with parker square faces)
@Qermaq
@Qermaq 8 месяцев назад
Making a tetrahedron with 3 blue faces and 1 brown face is brilliant, I'll grant you that.
@ZetaTwo
@ZetaTwo 8 месяцев назад
Sweden: in elementary school it was definitely y=kx+m but then in later parts of high school and at university I think ax+b was pretty common to be consistent with polynomials of arbitrary degree (ax^2+bx+c, etc)
@koinkorillas1692
@koinkorillas1692 8 месяцев назад
Thank you for the legible and useful video description
@mox3909
@mox3909 8 месяцев назад
I just learned about spanning trees for the first time 2 weeks ago. I thought it was cool but couldn't understand how it would ever be useful. I'm amazed.
@PhilipMurphyExtra
@PhilipMurphyExtra 8 месяцев назад
Always appreciate a good education RU-vid channel
@octopus44445
@octopus44445 8 месяцев назад
I heard "Glen and Friends" and thought this was about to be a very unexpected collab.
@belg4mit
@belg4mit 8 месяцев назад
Needs more maple syrup, eh?
@stephanep.joanisse7712
@stephanep.joanisse7712 8 месяцев назад
Would you really be that surprised if you found out Glen did a bit of math(s) on the side? Cooking, flying planes, video/film making… just another hobby?
@octopus44445
@octopus44445 8 месяцев назад
@@stephanep.joanisse7712 good point well made.
@OverkillSD
@OverkillSD 8 месяцев назад
Because all shapes are liars, Matt! Had a great time seeing you in LA, by the way! I reference that software engineer joke all the time now and it's glorious. I kind of wish I had that slideshow :)
@michaelwoodhams7866
@michaelwoodhams7866 8 месяцев назад
Here's a nice related result: For a polyhedron (e.g. a cube), at each edge we can define an angular deficit, being 360 degrees minus the angles of all the polygon vertices which meet there. E.g. for the cube, each vertex has three squares, each of which have 90 degree angles. So the deficit is 360 - 3 x 90 = 90. Now calculate this deficit for every vertex of the polygon, and add them up. In the case of the cube, there are eight identical vertices, so the total deficit is 90 x 8 = 720 degrees. Consider a regular triangular prism. Now each vertex has two squares and a triangle, so the vertex deficit is 360 - 2 x 90 - 60 = 120. There are six vertices, and 6 x 120 = 720. For any polyhedron which obeys Euler's polyhedron formula (i.e. no holes) and has plane faces, the answer is always 720 degrees. I leave the proof as an exercise for the student, but leave the hint to use Euler's polyhedron formula. It isn't difficult. I'm pretty sure, but haven't proved, that this extends to continuous surfaces: at every point there is a curvature. Integrate the curvature over the surface, and you'll get 4 pi (720 degrees in radians.) (Assuming your surface is embedded in Euclidian space and is topologically a sphere.)
@alicederyn
@alicederyn 8 месяцев назад
"You can just divide through by that constant" UNLESS it's zero! ax + by + cz = 0 is a separate case from ax + by + cz = 1!
@martijn8554
@martijn8554 8 месяцев назад
Glad I'm not the only one who noticed this!
@artificercreator
@artificercreator 8 месяцев назад
Oh nice! Thanks for the good stuff
@Sinnistering
@Sinnistering 8 месяцев назад
USA (IN), formative education in the 2000s, we used y = mx + b
@DrR0BERT
@DrR0BERT 8 месяцев назад
At 15:00 you said that ax+by+cz=d, that you only need three of the unknowns a, b, and c. This only applies to planes not passing through the origin.
@landsgevaer
@landsgevaer 8 месяцев назад
To limit the range of value such that bigger ones fit, you could hang them at (√v,√e,√f) and get a nice hyperboloid curved surface shape.
@BrentDeJong
@BrentDeJong 8 месяцев назад
Great video! at 10:29 the captions said "Spanish tree graph" instead of "spanning" 12:22 "oiless" lol
@frankharr9466
@frankharr9466 8 месяцев назад
Well, I'm glad you're having fun. Let us know if you're coming to the Boston area. That would be cool.
@davidjowett8195
@davidjowett8195 8 месяцев назад
16:15 isn't it great to see someone so passionate and animate about a subject they care for? 😄
@mihir2012
@mihir2012 8 месяцев назад
This is going to have something to do with the Euler's formula relating vertices, edges and faces, isn't it?
@lazergurka-smerlin6561
@lazergurka-smerlin6561 8 месяцев назад
That's exactly what I was thinking aswell
@quantumgaming9180
@quantumgaming9180 8 месяцев назад
The equation of a plane is ax + by + cz + d = 0 Euler's formula can be thought of as a plane equation( where a,c = 1 and b = -1 and d = -2) if x,y,z repressent the vertices, edges and faces of a polyhedron. Which is exactly what Matt shows in the video
@HunterJE
@HunterJE 8 месяцев назад
The dual of the beachball is a sort of puffed up pillow with two nonagonal faces with nine edges, trying to picture the dual of the over-verticed tetrahedron...
@alexpotts6520
@alexpotts6520 8 месяцев назад
It would be an over-faced tetrahedron with the standard four vertices. Each triangular face would have multiple copies bulging above and below the plane of the three vertices it connects to. EDIT: turns out I wasn't quite right about this. Thank you Mr Goomba dude.
@galoomba5559
@galoomba5559 8 месяцев назад
@@alexpotts6520 That's not true. There would actually be a bunch of thin 2-gonal faces between every pair of triangular faces.
@douglaswolfen7820
@douglaswolfen7820 8 месяцев назад
I'm honestly confused about how you even define a face in this context. I'm used to assuming that a face is a flat polygon, and the 4 "faces" of that jagged tetrahedron aren't flat
@mkb6418
@mkb6418 8 месяцев назад
I knew from the start it was Euler's formula. But I give credits for the visualization, now you never forget it.
@OneTrueBadShoe
@OneTrueBadShoe 8 месяцев назад
I would love to see Ben make a geogebra model with unfolded polyhedron and polychoron nets.
@newwaveinfantry8362
@newwaveinfantry8362 8 месяцев назад
My guess before watching the full video (around 4 minutes): All polyhedra, when squashed, are planar graphs, thus v - e + f = 2 applies and defines a plane.
@5hape5hift3r
@5hape5hift3r 8 месяцев назад
I think a variation of Euler v-e+f is to include the null face and the whole. Giving -1+v-e+f-1 = 0 in 2d polytopes this works as well -1+v-e+1 for the pentagon is -1+5-5+1 = 0 Also works with all dimensions.
@5hape5hift3r
@5hape5hift3r 8 месяцев назад
Technicly iprefer the negative of this but it works anyways,
@mittarimato8994
@mittarimato8994 8 месяцев назад
That line at 19:42 reminds me of the elemt table and their isotopes. The further you are away from the line, the more likely it is going to be an unstable isotope.
@macronencer
@macronencer 8 месяцев назад
UK, 1970s, y = mx + c. Obviously c stands for "constant", but I honestly can't remember whether any justification was given for the use of "m", nor what it actually was. Conceptually, I think I would prefer y = a + bx because I like the idea that you start from a fixed point, and THEN add a variable thing. Others here have also pointed out that this generalises more naturally for polynomials (e.g. y = a + bx + cx^2)
@Zeitoun-bs8cj
@Zeitoun-bs8cj 8 месяцев назад
In France it's y=ax+b
@marcosl2871
@marcosl2871 8 месяцев назад
Brazil too.
@sergiorestrepo6657
@sergiorestrepo6657 8 месяцев назад
Thank you Matt
@amative1
@amative1 8 месяцев назад
USA tends to use y=mx+b, as "b" is the y-axis adjustment parameter (to go with "a" adjusting the x-axis and "c" adjusting the z-axis)
@mehill00
@mehill00 8 месяцев назад
Oh is that why we use “b” for y intercept? Is this speculation or known?
@GeekRedux
@GeekRedux 8 месяцев назад
@@mehill00 It's not an explanation I've ever heard before.
@patrickherke8947
@patrickherke8947 8 месяцев назад
​​@@mehill00 I haven't heard that explanation before, but ax+by+cz=d is a common equation for a plane. And x=x0+ta, y=y0+tb, z=z0+tc is a common parametric representation of a line in 3D space. It's not exactly a 1-to-1 comparison (multiplication instead of addition) but I could see where someone could have associated b with y-intercept and then decided to use a different variable for the slope.
@kindlin
@kindlin 8 месяцев назад
@@mehill00 He means the more general equation y = m(x - a) + b, which does make the b make a little more since. As he points out, a controls the x axis and b controls the y axis. edit: Never seen a c for the "z axis" but if you wanted to go into a third axis, I guess +cz would do it.
@mehill00
@mehill00 8 месяцев назад
@@kindlin I follow the logic. I was curious whether this was pattern recognition, speculation, or based on some historical knowledge or source. It’s one thing to say this is plausible, perhaps very plausible, and it’s another to say this is the known historical reason.
@tobiaskarlsson7565
@tobiaskarlsson7565 8 месяцев назад
Since you asked for letters/symbols used in different countries: in Sweden, we use 'k' for slope/gradient and 'm' for intersect. So the line equation would be y=kx+m.
@0xTJ
@0xTJ 8 месяцев назад
I'm Canadian, and it's `y=mx+b' or death!
@Jar.in.a.Bottle
@Jar.in.a.Bottle 8 месяцев назад
This must have been the reason why Saruman said about Gandalf, "So, you have chosen death".
@Sam_on_YouTube
@Sam_on_YouTube 8 месяцев назад
Hey, I was on that live stream! Good times, good times.
@fabienrymland3191
@fabienrymland3191 8 месяцев назад
Hello and thank you. In France, we use y = ax+b or y = mx+p (the first one mainly linked with the function f(x) = ax+b.
@fabienrymland3191
@fabienrymland3191 8 месяцев назад
we tend to write function as : f(x) = ax^n + bx^n-1 ...
@dgthe3
@dgthe3 8 месяцев назад
Canadian here (specifically Ontario, if it makes a difference) y=mx+b m means slope, because they said so. b means y intercept, because they said so. Super easy for children to intuit.
@chaos.corner
@chaos.corner 8 месяцев назад
I've seen a lot of comments about how the line is defined in the US but a lot of people don't realize that it was recently changed to be 'y=mx+you know the thing'
@mananself
@mananself 8 месяцев назад
Ha, I just saw myself and my son at 5:44, on the right side. How fortunate
@DeGuerre
@DeGuerre 8 месяцев назад
The way I think about it is V + F = E + C + 1, where C is the number of components. A blank plane has V=0, F=1, E=0, C=0. Adding a vertex adds 1 to V and 1 to C, which keeps the equation true. Adding an edge either connects two components or connects two vertices in the same component. In the first case, it adds 1 to E, and subtracts 1 from C. In the second case, it adds 1 to E and 1 to F. Either way, any addition keeps the equation true.
@BoxEnjoyer
@BoxEnjoyer 8 месяцев назад
In the US we use mx+b, although you probably already knew that if you brought it up lol.
@zozzy4630
@zozzy4630 8 месяцев назад
"Installation" is always a noun, even when it means "the act or process of installing something." Notice the parallelism with e.g. "dinner:" "The installation took three hours;" "Dinner took three hours." (We had clocks, eating which was time-consuming.) Interestingly, -ing words are often both: "driving" is a noun in "Driving is terrible in New York," and a verb in "I can't talk now, I'm driving!"
@trchri
@trchri 8 месяцев назад
When an -ing verb is used as a noun it’s called a gerund
@zozzy4630
@zozzy4630 8 месяцев назад
@trchri Yup! They can often be adjectives too - loving, appalling, menacing.
@David_K_Booth
@David_K_Booth 8 месяцев назад
​@@zozzy4630 Yes - the "driving" in "I can't talk now, I'm driving!" is a good example of a verbal adjective.
@redvinstone
@redvinstone 8 месяцев назад
In Sweden we use y=kx+m for the line equation.
@LouisEmery
@LouisEmery 8 месяцев назад
5:00 I remember there was such a rule that included an offset of 2 when I was young, probably discovered by greeks.
@osmanbadroodin3215
@osmanbadroodin3215 8 месяцев назад
I want that fused megaminx puzzle in the background 😭😭 , it would be so cool in my collection , I should try to make one
@Crysal
@Crysal 8 месяцев назад
9:28 oh god, you mentioned spanning tree, now I have to listen to the spanning tree song.
@simonzprahy9270
@simonzprahy9270 8 месяцев назад
Here in the czech republic we were always taught that the coefficients of any order polynomial go alphabetically starting from the highest order term, eg: ax^3 + bx^2 + cx + d or ax^2 + bx + c or ax + b
@Justifer14
@Justifer14 8 месяцев назад
In Sweden se use y=kx+m, seems strange now that I found out that lots of other use m as the derivative… Although, we spell “constant” with a k, so that might be a reason for our choice…
@Johan323232
@Johan323232 8 месяцев назад
I’m glad my first instinct for the polytopal planar equation was correct. Also, I would like to register a technical addendum. y=mx+c cannot give you the equation of any line, x=6 for example cannot be realized this way, it only gives you all linear functions. I wouldn’t call it a correction, because the video definitely wouldn’t be improved by making the distinction, but it does explain why you have the d value in the plane equation, because d=1 and d=0 are fundamentally different cases as it turns out.
@Doseplays1
@Doseplays1 8 месяцев назад
What's up with the captions of this video? We have oiliver, ollier, and olier for Euler. As well as polinomial and plenty other mathematical mispellings..... dual = jewel....
@scottdebrestian9875
@scottdebrestian9875 8 месяцев назад
The polyplane is very interesting! I'd love to see the polyhedron with -14 vertices, -20 edges and -4 faces!
@AlexandHuman
@AlexandHuman 8 месяцев назад
This feels somehow connected to prime numbers. Especially at the end when the central splits off from the square base pyramid. It reminds me of how 2 and 3 branch off into being above and/or below a multiple of 6.
@illadiel6049
@illadiel6049 8 месяцев назад
Matt knows how much we all enjoy pre-pre-orders
@channelzoldleo6841
@channelzoldleo6841 8 месяцев назад
In Hungary we use y=mx+b, where m stands for "meredekség"=steepness, and b stands for "idk, just learn it".
@skyscraperfan
@skyscraperfan 8 месяцев назад
The fact there always is a circle free path through all vertices was new to me. It does not seem obvious, but can probably also be solved be induction.
@madsohm
@madsohm 8 месяцев назад
Denmark does a bit of a mix, which I expect all countries do. We do "y = ax + b" (and for quadratics: y = ax² + bx + c) in primary school, but as you enter university, most tend to move to "y = mx + c"
@Taversham
@Taversham 8 месяцев назад
Huh, that's the exact opposite of how I was taught in the UK, we had y=mx+c up until Year 13 (age 17-18), then it switched to y=ax+b at university. Wasn't until I read the comments on this video that I realised people use so many other options!
@GavrielFleischer
@GavrielFleischer 8 месяцев назад
ax+b from Hungary
@KubaSzymanowski
@KubaSzymanowski 8 месяцев назад
Same in Poland. Lengyel, magyar két jó barát
@ClaraDeLemon
@ClaraDeLemon 8 месяцев назад
Would be funny if someone had sent a polyhedric croissant: basically imagine a croissant turned into ps1 graphics, and the endpoints meet. It doesn't satisfy the euler equation, with an euler characteristic of 3, but its not trivial explaining why (the hole inside is not really a hole like with a polygonal donut, its the shared vertex ruining it all). Polyhedra (1997) by Peter Cromwell explains it so much better than I could in page 209, great book thoroughly recommended
@jameshart2622
@jameshart2622 8 месяцев назад
My math classes always used y=ax+b for lines, but I prefer ax+by+c=0 because that naturally includes all lines, including vertical ones.
@AndriiSalata
@AndriiSalata 8 месяцев назад
To generalize it. If wi have a sequence of edges linked with vertexs, we have Edges - Vertex = 1. Once you add one more connection point to build a volumed structure you get Edge - Vetexs = 2. What if we go to hyperspace (e.g. add time dimention) and wrap our shape in time as well? We should have Edges - Vertexs = 3, and so on? Isn't it a good topic for a new episode? Reach me if you'd like to igure this out together
@billcook4768
@billcook4768 8 месяцев назад
Has Matt ever covered Kepler’s theories on polyhedrons and planetary orbits? If not, they would blow his mind.
@high2407
@high2407 8 месяцев назад
In the Netherlands we used y=ax+b for a simple line :)
@phillipbrown4686
@phillipbrown4686 8 месяцев назад
I think it's cool to see that the regular polyhedra made out of triangles are on one side of the dual line and the others are on the other side.
@GregorShapiro
@GregorShapiro 8 месяцев назад
The triangular polyhedra are 'minimal' in the sense that each face cannot be split further by connecting vertices of a face.
@jumpman8282
@jumpman8282 8 месяцев назад
During the tree graph proof I kept thinking to myself: "But what does this tree graph have to do with the polyhedron in the first place?" It wasn't until you filled in the missing edges that I, too, "connected the dots" :)
@BrianFullerPDX1
@BrianFullerPDX1 8 месяцев назад
Master class in how not to get to the point even including footage of walking on the sidewalk for no reason at all. I had math teachers like this in school that seemed to pride themselves on being obtuse and fragmented. Then later someone else would explain whatever it was they were teaching in about three sentences and you'd go "Oh, yeah, of course..."
@josephmarrow5598
@josephmarrow5598 8 месяцев назад
I was at JMM, super cool to see this
Далее
The bubble that breaks maths.
24:09
Просмотров 510 тыс.
The 56-Year Argument About a Hopping Hoop
23:55
Просмотров 563 тыс.
Beware the Runge Spikes!
17:08
Просмотров 463 тыс.
Why does Vegas have its own value of pi?
23:29
Просмотров 836 тыс.
"Being human" by Dr Hannah Fry
1:32
Просмотров 64 тыс.
Exploring the mysteries of the Prime (gaps!) Line.
21:43
How did the 'impossible' Perfect Bridge Deal happen?
24:55
The search for the biggest shape in the universe.
18:49
Why does this balloon have -1 holes?
32:40
Просмотров 1,3 млн
Rotation without rotating.
16:52
Просмотров 1 млн
The 1,200 Year Maths Mistake
19:10
Просмотров 2,4 млн