Тёмный

302.4B: Solvable Groups 

Matthew Salomone
Подписаться 17 тыс.
Просмотров 29 тыс.
50% 1

What makes a group "solvable?" How might a group NOT be solvable?

Опубликовано:

 

23 янв 2013

Поделиться:

Ссылка:

Скачать:

Готовим ссылку...

Добавить в:

Мой плейлист
Посмотреть позже
Комментарии : 37   
@josephhirsh
@josephhirsh 10 лет назад
Not every normal subgroup contains the commutator subgroup, but every normal subgroup whose quotient is abelian does.
@yongjoonkim6608
@yongjoonkim6608 5 лет назад
I am highshcool math teacher in Koea. You are awesome in math. Your technic to explain is too good. I appreciate you. Thank you. 나는 한국 고등학교 수학교사입니다. 당신은 정말로 수학 천재입니다. 그리고 알기 쉽게 잘 가르칩니다. 항상 존경합니다. 감사합니다.
@mrsteth993
@mrsteth993 9 лет назад
Remember, [G,G] is not just the subgroup consisting of all commutators, but is the subgroup generated by the commutators. There exist groups that have a commutator subgroup that contains more than just commutators, the smallest of these groups having order 96. Just being persnickety about your definition of the subgroup! Such a group is discussed in Rotman's 'An Introduction to the Theory of Groups,' exercise 2.43 page 34 of the 4th edition.
@Grassmpl
@Grassmpl 7 лет назад
Yeah I was just going to say that this definition of [G,G] is not quite right
@MatthewSalomone
@MatthewSalomone 11 лет назад
Yes, if N < G is normal and M < H is normal, then N x M < G x H is normal (in a direct product G x H, elements from G only act on elements of G and likewise for H, so this follows from the definition). However, if M < H is not normal, then N x M < G x H is probably not normal for the same reason.
@MatthewSalomone
@MatthewSalomone 11 лет назад
Right; in the notation Z5 semicross Z2, the first factor Z5 is a normal subgroup - but not of Z2... rather, a normal subgroup of the semidirect product (i.e. D5).
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
And that Z_p normal subgroup would be the abelian simple group I referenced before right? Okay yes I am just a little rusty on some things, but this is "clicking". Good to see things in a different way. Thank you.
@MatthewSalomone
@MatthewSalomone 11 лет назад
Sure: {1} is a maximal normal subgroup of an abelian group iff that group is Z_p for some prime p. By the fundamental theorem of abelian groups, every finite abelian group has some Z_p as a normal subgroup.
@danteng5651
@danteng5651 10 лет назад
I think that the commutator subgroup is contained in the normal subgroup iff the quotient group is abelian, not for any normal subgroup, right?
@MatthewSalomone
@MatthewSalomone 11 лет назад
Sure, any normal subgroup N < G for which the quotient G/N is not abelian would work. For instance, the normal subgroup S_3 x {1} < S_3 x S_4 has nonabelian quotient isomorphic to S_4.
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
For the dihedral group of the regular 5 gon there is the normal subgroup Zmod5 but what would be the semidirect product? Based on the video it seems like D5=Z5 semicross Z2 but Z2 isn't a normal subgroup of Z5 since the order of it doesn't divide the order of Z5. So what is the case then?
@jmjxcabbage
@jmjxcabbage 9 лет назад
Thanks Matthew for your video! It explains stuff well. But I notice something might be wrong in your video. Since the group Z mod 12 and the group Z mod 6 have different operations, Z mod 6 is not supposed to be a subgroup of it ( unless you create an isomorphism ). check the video at 6:17
@redaabakhti768
@redaabakhti768 8 лет назад
+Waikit Choi exact the exemple for the the jordan hölder theorem Is false
@Grassmpl
@Grassmpl 7 лет назад
You're thinking about Zn as labelled 0 to n-1. This need not be the case. I can label Z4 as 0,1,2,3 and Z2 as 0,2 (mod 4) rather than 0,1 (mod 2). As long as there exist a subgroup isomorphic to the one being perceived, that's all that matters.
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
Okay I see. And as for direct products that are normal, is it true that the direct product of two normal subgroups is normal? What about the direct product of a normal and not normal subgroup? Makes sense to me that the direct product of abelian groups is abelian so that is an answer for the first question. But what about the other case? I feel rusty on thinking about everything we think about for groups but for examples that are direct products of groups. I'd like to work with them a bit more
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
Also, if the last normal subgroup save for the trivial group has to be abelian and maximal in the case of the JH theorem, doesn't that mean it must be simple? So for a group to be solvable does it have to have an abelian simple normal subgroup contained within it (or is itself an abelian simple group which also fits this requirement being a normal subgroup in itself)?
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
....was 4 though we had collections of cardinality
@NavidVali
@NavidVali 6 месяцев назад
you're a legend tnk u
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
(forgive me for the many question but...) direct products don't rely on any group they are isomorphic to but the way we define a semidirect product is inherently related to a group they are isomorphic to? ZnXZm very easily defined as just the set of 2tuples (a,b) where a is from Zn and b is from Zm but a semi direct product is the set of 2 tuples (a,b) where...?
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
Can we ever have a normal subgroup of a group that isn't apart of any composition series that proves the group's solvability?
@bonbonpony
@bonbonpony 4 года назад
If ℤ₁₂ is solvable, and we can find one such descending path, does it mean that _every_ such path would work for ℤ₁₂? Also, can it also be said that ℤ₁₂ is solvable because we can write it as a direct product of cyclic groups? (e.g. ℤ₁₂ = ℤ₂×ℤ₂×ℤ₃ = ℤ₂×ℤ₆ = ℤ₃×ℤ₄; I simply took the Abelian groups that you wrote under the triangles in purple, and crossed them together)
@MatthewSalomone
@MatthewSalomone 4 года назад
Bon Bon I agree that any direct product of cyclic groups (indeed any direct product of simple groups) will be solvable. And to your first question, the J-H theorem will tell you that, if I have one descending path (i.e. composition series, so all the quotients are simple), then any other descending path you could find has the same number of steps, because the same quotient factors - though possibly in a different order.
@user-xm9xo7jg4u
@user-xm9xo7jg4u 2 года назад
Hello Professor Salomone, would you mind recommending some text books that proved the observation in 12:09? Thanks so much.
@dogbiscuituk
@dogbiscuituk 6 лет назад
Q. Why are solvable groups so heavy? A. Because they have Abelian pieces inside them.
@Grassmpl
@Grassmpl 7 лет назад
Trivial group is normal to every group, but clearly the commutator subgroup is trivial iff G is abelian. Thus here is another issue
@AnthonyCasadonte
@AnthonyCasadonte 11 лет назад
So all abelian groups are solvable, but there are some solvable groups that aren't abelian like Dsub4. But we do know that of all groups that are not abelian those that are simple are unsolvable. Only the simple groups that are abelian are solvable. And for the maximality condition for the JH theorem that means that of all collections of normal subgroups that prove solvability of a group there is a unique maximal cardinality as we had with Zmod12 where the maximal cardinality for a collection
@Mrpallekuling
@Mrpallekuling 10 месяцев назад
02:40 How does this "definition" relate to equations being solvable? (Perhaps this is explained in a different video in this series) 02:59 😁 09:28 😀
@MatthewSalomone
@MatthewSalomone 10 месяцев назад
I wondered the same thing, which is why I designed this colloquium talk: ru-vid.com/video/%D0%B2%D0%B8%D0%B4%D0%B5%D0%BE-Sg97_Azxvjo.html&pp=ygUNY3ViaWMgd29ya291dA%3D%3D
@Mrpallekuling
@Mrpallekuling 10 месяцев назад
@@MatthewSalomone Thank you! I watched that last year, but forget.
@utashiori141
@utashiori141 10 лет назад
Hello. It's me. The poor in Abstract Algebra kid. I'd like to say two things : 1.) Does a perfect group exist ? 2.) Could you kindly do a video / direct me if there is one showing a proof that every solvable group has normal subgroups that are solvable. You mentioned this as a summary in the Quintic impossible at the end. Thanks.
@thharrimw
@thharrimw 9 лет назад
en.m.wikipedia.org/wiki/Perfect_group
@Jkfgjfgjfkjg
@Jkfgjfgjfkjg 4 года назад
@1:15 the word is "portentous".
@kyrieirving-666
@kyrieirving-666 3 месяца назад
you are my god
@ThefamousMrcroissant
@ThefamousMrcroissant Год назад
You misspelled portentous
@buraianmath
@buraianmath 2 года назад
Very based video
@buraianmath
@buraianmath 2 года назад
I spent 11 days jumping around different videos on this channel and then came back to this one lol
@matron9936
@matron9936 3 года назад
Nice video, horrible notation
Далее
302.5A: Representations of Groups
11:14
Просмотров 25 тыс.
302.4A: Quotient Groups
11:37
Просмотров 29 тыс.
СДЕЛАЛА БРЕКЕТЫ ДОМА
01:01
Просмотров 1,2 млн
302.7D: What is a Galois Group?
14:51
Просмотров 27 тыс.
Solvable Groups Part 1
21:00
Просмотров 13 тыс.
302.6C: The Trouble with A5
14:04
Просмотров 8 тыс.
302.S7c: Two Galois Group Examples
14:11
Просмотров 14 тыс.
Visual Group Theory, Lecture 5.6: The Sylow theorems
48:37
302.2A: Subgroups
9:51
Просмотров 19 тыс.
Quotient Groups Part 1
23:38
Просмотров 33 тыс.
GT7. The Commutator Subgroup
15:21
Просмотров 28 тыс.